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A lattice Boltzmann model for mixture modeling is developed by applying the multiple-relaxation-time
�MRT� approach to the Hamel model, which allows one to derive from a general framework different model
equations independently proposed, like the Gross-Krook model and the Sirovich model. By imposing some
physical constraints, the MRT lattice-Boltzmann Hamel model reduces to the generalized MRT lattice-
Boltzmann Gross-Krook model �involving the local Maxwellian centered on the barycentric velocity�, which
allows one to tune independently the species diffusivity, the mixture kinematic viscosity, and the mixture bulk
viscosity. Reducing the number of moving particles over the total is possible to deal effectively with mass
particle ratios far from unity and, for this reason, to model the pressure-driven diffusion. A convenient numeri-
cal approach is proposed for solving the developed model, which essentially widens the stability range of
conventional schemes in terms of dimensionless relaxation frequencies, by solving explicitly the advection
operator together with the nonlinear terms of the collisional operator and solving implicitly the residual linear
terms. In this way, the calculations are drastically reduced and the operative matrices can be computed once for
all, at the beginning of the calculation �implying moderate additional computational demand�. Following this
approach, a semi-implicit-linearized backward Euler scheme, ideal for parallel implementations, is proposed.
In order to achieve the previous results, the asymptotic analysis, recently suggested for analyzing the macro-
scopic equations corresponding to lattice-Boltzmann schemes in the low-Mach-number limit, proves to be an
effective tool. Some numerical tests are reported for proving the consistency of the proposed method with both
the Fick model and Maxwell-Stefan model in the macroscopic limit.
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I. INTRODUCTION

In the last years, the lattice Boltzmann method �LBM� has
become very popular among the discretization techniques for
solving simplified kinetic models. Starting from some pio-
neer works �1–3�, the method has reached a more systematic
fashion �4,5� by means of a better understanding of the con-
nections with the continuous kinetic theory �6,7� and by wid-
ening the set of applications, which can benefit from this
numerical technique. When complex geometries are consid-
ered and interparticle interactions must be taken into ac-
count, the discretized models derived by means of the lattice
Boltzmann method offer some computational advantages
over continuum-based models, particularly for large parallel
computing. In order to appreciate the connection between the
lattice Boltzmann method and conventional finite-difference
techniques, it is useful to recognize that this method can be
considered a useful subclass of fully Lagrangian methods
�8�. A more complete and recent coverage of various previ-
ous contributions to the LBM is beyond the purposes of the
present paper, but can be found in some books �9–11� and
some review papers �12,13�.

A promising application for lattice Boltzmann models
seems to be the analysis of reactive mixtures in porous cata-
lysts �14,15�. For this reason, a lot of work has been per-
formed in recent years in order to produce reliable lattice
Boltzmann models for multicomponent fluids and, in particu-
lar, for mixtures composed by miscible species. The problem
is to find a proper way, within the framework of a simplified
kinetic model, for describing the interactions among particles

of different types—i.e., cross collisions. Once this milestone
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is defined, the extension of the model to reactive flows is
straightforward �16,17� and it essentially involves additional
source terms in the species equations according to the reac-
tion rate.

Unfortunately, most existing lattice Boltzmann models for
mixtures are based on pseudopotential interactions �18–21�
or heuristic free energies �22–25� in order to realize the so-
called single-fluid approach �26,27�. Essentially, the aver-
aged effect due to both self-collisions and cross collisions is
described by means of a total Bhatnagar-Gross-Krook-like
�BGK-like� collisional operator. Considering some special
kind of mixture properties in the Maxwellian distribution
function of the BGK-like collisional operator, each species
will be forced to evolve towards the mixture equilibrium
conditions. For almost a decade now, diffusions driven by
concentrations, pressure, temperature, and external forces
have been studied by this kind of models for an arbitrary
number of components with nonideal interactions. Even
though the single-fluid approach proved to be an accurate
numerical tool for solving some macroscopic equations in a
large number of applications, it provides a mesoscopic pic-
ture of the phenomena which shows some limits �see the
next section for details�.

On the other hand, some models based on the multiple-
fluid approach have been proposed. According to this ap-
proach, each species relaxes towards its equilibrium configu-
ration according to its specific relaxation time constants and
some coupling must be considered in order to describe the
collisions among different species. Some models �28,29�
adopt a force coupling in the momentum equations, which

derives from a linearized kinetic term, while other models

©2006 The American Physical Society-1

http://dx.doi.org/10.1103/PhysRevE.73.056705


PIETRO ASINARI PHYSICAL REVIEW E 73, 056705 �2006�
�30,31� avoid any linearization of the coupling effect.
In particular, the Hamel model �32–34�, originally devel-

oped as a simplified kinetic equation for mixture modeling,
allows one to derive from a general framework different
model equations independently proposed, like the Gross-
Krook model �35� and the Sirovich model �36�, which are
the theoretical forerunners of the single-fluid and multiple-
fluid approaches, respectively. For this reason, the Hamel
model allows one to describe mixtures at different limiting
regimes consistently. An LB discrete formulation of the con-
tinuous kinetic model proposed by Hamel has been recently
proposed �31�.

The goals of this paper are the following: �i� To extend the
previous LB formulation of the Hamel model by means of
the multiple-relaxation-time �37,38� �MRT� approach in or-
der to independently tune the macroscopic transport coeffi-
cients and to clarify once for all how the Hamel model is
related to the other conventional models �in particular the
Gross- Krook model and the Sirovich model�; �ii� to find a
simple way for modeling the additional effects due to pres-
sure diffusivity when mass particle ratios far from unit are
considered; �iii� to identify the best numerical scheme for
mixture modeling in terms of accuracy, stability, and simplic-
ity for dealing with parallel implementation; �iv� finally to
test the suitability for the considered application of the
asymptotic analysis �39,40�, recently suggested as an effec-
tive tool for analyzing the macroscopic equations corre-
sponding to LB schemes.

This paper is organized as follows.
Section II A clarifies some general issues concerning the

single-fluid and multiple-fluid approaches. Section II B sum-
marizes the previous single-relaxation-time formulation of
the Hamel model by introducing a new compact form. Sec-
tion II B generalizes the previous formulation by means of
the multiple-relaxation-time approach for the continuous
case.

Section III A shows some limits of the Chapman-Enskog
expansion for the considered model. Section III B recovers
the macroscopic equations which correspond to the continu-
ous model by means of the asymptotic analysis.

Section IV A introduces the proposed semi-implicit-
linearized �SIL� approach. Section IV B discusses the
memory-optimized �single-step� integration formulas, while
Sec. IV C discusses the speed-optimized �multiple-step� in-
tegration formulas. Section IV D introduces the proposed
semi-implicit-linearized backward-Euler �SILBE� formula,
which is analyzed by means of the asymptotic analysis in the
Sec. IV E.

In Sec. V A the stability analysis by means of the eigen-
value spectra for single-step integration formulas is reported.
Section V B reports the numerical results concerning the de-
cay of the sine-wave density profile. Section V C discusses
the numerical results for the Taylor-Green vortex flow. Fi-
nally, Sec. V D deals with some numerical tests, purposely
developed for proving the consistency of the proposed
method with both the Fick model and Maxwell-Stefan model
in the macroscopic limit.
Section VI summarizes the conclusions of this work.
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II. LATTICE BOLTZMANN MODELS FOR MIXTURES

A. Single-fluid versus multi-fluid approach

Before proceeding with the discussion of the lattice Bolt-
zmann models for mixtures and how to integrate them nu-
merically, it is worth the effort to clarify some basic concepts
regarding the dichotomy between single-fluid and multiple-
fluid approaches.

In the framework of the lattice Boltzmann method, the set
of microscopic velocities is so small that a proper model
Boltzmann equation—i.e., a simplified collision operator—
must be considered in order to describe the time dynamics of
the distribution function due to collisions. Unfortunately
there is considerably more latitude in the choice of a linear-
ization procedure in the case of a mixture than for a pure gas
�41�. In the latter case, a local Maxwellian centered on the
�uniquely defined� macroscopic velocity is usually a candi-
date for the unperturbed component of the distribution func-
tion. In a mixture, however, it is possible to linearize about a
local Maxwellian which contains the barycentric velocity or,
alternatively, we can introduce distinct species flow veloci-
ties and linearize about local Maxwellians which contain
these quantities.

The theory of the collision operators which results in the
latter case is complicated by the fact that these operators will
not have the usual symmetry properties. In particular the
leading term—i.e., the unperturbed term—of the distribution
function could be no longer Maxwellian and, for this reason,
the application of the usual expansion technique based on
this assumption, like the Chapman-Enskog procedure, could
be doubtful at least. On the other hand, when one species is
considerably heavier than the other, or present at consider-
ably higher concentration, then self-collisions tend to play a
dominant role, so that the species first equilibrate individu-
ally and only then mutually �41�. Even though it could yield
to slightly more complicated models, the choice of separate
Maxwellians seems more general and better suited for deal-
ing with different regimes consistently.

For this reason, the Hamel model �32–34� seems very
promising for mixture modeling by the lattice Boltzmann
method, because it makes use of collision operators involv-
ing both the Maxwellian centered on the barycentric velocity
and those centered on the distinct species flow velocities.
According to this model, the distribution function g� for the
generic species � satisfies the following equation:

�g�

�t
+ v · �g� =

1

��

�g�
e − g�� +

1

�m
�ge − g�� , �1�

where g�
e =g*

e�u��, g�m
e =g*

e�u�, and g*
e�u*� is defined as

g*
e�u*� =

��

m��2�e��D/2 exp�−
�v − u*�2

2e�
� . �2�

In particular u� is the single-species velocity and u is the
barycentric velocity, defined as the mass average of the
single-species velocities—i.e., u=��x�u� where x� is the ge-
neric mass concentration.

If both collision operators are considered, then the linear-

ized model can be defined consistent with the multiple-fluid
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approach and, in this case, the relaxation time constants ��

and �m can be tuned for modeling the equilibration processes
due to self-collisions and cross collisions, respectively. On
the other hand, if 1 /��=0, then the model reduces to the
structure prescribed by the single-fluid approach and the
residual relaxation time constant �m can be tuned for model-
ing the mutual effects due to both self-collisions and cross
collisions.

Independently of the considered choice, all the models
must ensure the macroscopic continuity equation for the dis-
tinct species �and consequently for the mixture�, the macro-
scopic momentum equation for the barycentric velocity, and
the diffusive law as the leading term of the distinct species
momentum—namely,

���

�t
+ � · ���u�� = 0, �3�

�

�t
��u� + � · ��u � u� = − �p + ���m � · ��u��

+ � · ��m � ��u� + �m � ��u�T� ,

�4�

��u� = ��u − D� � �� + O�u2� . �5�

This means that multiple-fluid and single-fluid approaches
could only differ with regards to O�u2� terms in the distinct
species momentum; namely, they can recover distinct species
momentum equations including different O�u2� terms. Since
summing over the distinct species equations the same equa-
tion for the barycentric momentum must be recovered, then
these additional terms, which explain the discrepancy be-
tween multiple-fluid and single-fluid approaches, must be lin-
ear functions of ���−�� and/or ��w�=���u�−u�, because
�����−��=0 and ����w�=0. In the macroscopic modeling,
these additional terms, which effect the diffusion law, are
usually neglected. For this reason, determining which terms
are preferable in order to chose between the multiple-fluid
and single-fluid approaches can only be done by recalling the
results due to the continuous kinetic theory.

In the next section, the single-relaxation-time �SRT� for-
mulation of the Hamel model on the D2Q9 lattice will be
discussed.

B. Single-relaxation-time formulation of the Hamel model
on the D2Q9 lattice

Introducing a proper two-dimensional lattice �D2Q9� for
the microscopic velocity and considering the limiting case
U /c	1, where U is a characteristic macroscopic flow speed
and c is the lattice speed, leads to the SRT formulation of the
Hamel model �31�—namely,

�f�
i

�t
+ vi · �f�

i = 
��f�
ei − f�

i � + 
m�fm
ei − f�

i � , �6�

where f�
ei= f�

ei�u�� is the equilibrium distribution function
centered on the species velocity and fm

ei= fm
ei�u� is the equilib-
rium distribution function centered on the barycentric veloc-
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ity, defined as the mass average of the species velocities.
It is possible to reformulate the previous equation in a

simpler way,

�f�
i

�t
+ vi · �f�

i = �
� + 
m��f�m
ei − f�

i � , �7�

where f�m
ei = �1−���f�

ei+��fm
ei and ��=
m / �
�+
m�. The

modified equilibrium distribution function is defined as

f�m
ei = ��sI

i�s0
i /sI

i +
3

c2vi · ��1 − ���u� + ��u� +
9

2c4 ��1 − ���

��vi · u��2 + ���vi · u�2� −
3

2c2 ��1 − ���u�
2 + ��u2�	 ,

�8�

where the weight vectors are

s0= �1−5/9s��,

�s�/9,s�/9,s�/9,s�/9,s�/36,s�/36,s�/36,s�/36�T, �9�

sI = �4/9,1/9,1/9,1/9,1/9,1/36,1/36,1/36,1/36�T, �10�

and finally s�=3e� /c2. It is easy to prove that if s�=1, then
s0=sI. The constants in sI are the usual weight factors for this
lattice �5�, and e� is the internal energy. The previous equa-
tions can be written in vectorial form—namely,

�f�

�t
+ V · �f� = �
� + 
m�I�f�m

e − f�� , �11�

where V is defined as

VT = c�0 1 0 − 1 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1
� . �12�

In the previous equation and in the following of this paper,
the dot product between matrices must be thought as saturat-
ing the second index: in fact, V�R9�2, �f��R9�2, and
V ·�f��R9.

It is possible to consider an equivalent moment system of
the previous model by defining a proper set of moments. The
lower-order moments are the conserved hydrodynamic mo-
ments, but the higher-order nonhydrodynamic moments are
unknown. Since the final goal of the moment formulation is
to decouple the different moments in order to relax them
differently, it is seems natural to consider an orthogonaliza-
tion procedure: in the following, the well-known Graham-
Schmidt procedure will be considered. In order to apply this
procedure, two elements are needed: the generalized scalar
product and the starting nonorthogonal basis. Concerning the
first issue, it has been shown �40� that the scalar product,
which includes the weight factors, namely,


x,y� = �sI � x � y� = �
i=0

8

sI
ixiyi, �13�

generates an orthogonal basis clearly separating the terms in
the distribution function according to the power of macro-

scopic velocities. In the previous definition, the generalized
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saturation product �, defined with regards to the coordinate
identifying the lattice components only, has been used. This
product can be applied for generating higher-order tensors as
well, and the dimension of the result depends on the number
of residual indices, once the coordinate identifying the lattice
components has been saturated: for examples,

� = 1 � f , � u = V � f ,
� � � � �

both distinct species and mixture macroscopic properties.

056705
T� = V � V � f�.

Concerning the starting nonorthogonal basis, it is essentially
a matter of convenience: for simplicity, a simple monomial
basis will be considered
�1, v̂x , v̂y , v̂xv̂y , v̂x

2 , v̂y
2 , v̂xv̂y

2 , v̂yv̂x
2 , v̂x

2v̂y
2, where v̂x=vx /c and

v̂y =vy /c. These assumptions yield the following linear

mapping:
MA = �
1 1 1 1 1 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 0 0 0 1 − 1 1 − 1

− 1/3 2/3 − 1/3 2/3 − 1/3 2/3 2/3 2/3 2/3

− 1/3 − 1/3 2/3 − 1/3 2/3 2/3 2/3 2/3 2/3

0 − 1 0 1 0 2 − 2 − 2 2

0 0 − 1 0 1 2 2 − 2 − 2

1 − 2 − 2 − 2 − 2 4 4 4 4

� , �14�
which allows us to define the full set of equilibrium moments
for self-collisions,

m�
e = MAf�

e = ���1, û�x, û�y, û�xû�y,�s� − 1�/3 + û�x
2 ,�s� − 1�/3

+ û�y
2 ,0,0,1 − s��T, �15�

and cross collisions,

mm
e = MAfm

e = ���1, ûx, ûy, ûxûy,�s� − 1�/3 + ûx
2,�s� − 1�/3

+ ûy
2,0,0,1 − s��T. �16�

The same mapping MA can be used for defining the generic
nonequilibrium moments—namely, m�=MAf�—which are
rescaled by means of the lattice speed in order to ensure that
all the moments have the same physical dimensions equal to
those of the density. Finally, the equivalent moment system
corresponding to Eq. �11� is

�m�

�t
+ MAV · �MA

−1 � m�� = �
� + 
m�I�m�m
e − m�� ,

�17�

where m�m
e = �1−���m�

e +��mm
e . These preliminary results,

which are equivalent to those reported in the paper discuss-
ing the SRT formulation of the Hamel model �31�, will be
generalized in the following section. However, it is worth
pointing out that the dichotomy between the single-fluid and
multiple-fluid approaches is reduced by considering a gener-
alized equilibrium distribution function m�m

e , which involves
C. Multiple-relaxation-time formulation of the Hamel model
on the D2Q9 lattice

The previous vectorial equation �11� can be formally
generalized as

�f�

�t
+ V · �f� = A��f�

e − f�� + Am�fm
e − f�� , �18�

where A�=MD
−1D�MD, Am=MD

−1DmMD, and MD defines a
proper orthonormal basis. In particular, D� and Dm are diag-
onal matrices,

diag�D�� = �
�
0 ,
�

I ,
�
I ,
�1

II ,
�2
II ,
�3

II ,
�
III,
�

III,
�
IV�T,

diag�Dm� = �
m
0 ,
m

I ,
m
I ,
m1

II ,
m2
II ,
m3

II ,
m
III,
m

III,
m
IV�T,

�19�

collecting the generalized relaxation time constants for self-
collisions and cross collisions, respectively.

In the equivalent moment space, the previous equation
can be reformulated as

�m�

�t
+ MAV · �MA

−1 � m�� = E��m�
e − m�� + Em�mm

e − m�� ,

�20�

where E�=MAA�MA
−1 and Em=MAAmMA

−1. The easiest
choice is obviously MD=MA, because in this case E�=D�

and Em=Dm. The choice of MD determines how the macro-
scopic transport coefficients depend on the relaxation time
constants. Even though this arbitrary choice will not alter the
number of tunable parameters for a given lattice, it would be

desirable to realize a one-to-one direct link between the mac-
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roscopic transport coefficients and the relaxation time con-
stants. In particular, the easiest choice will force one to solve
a simple linear set of equations in order to tune the relaxation

time constants for recovering the desired values of the kine-

defined as
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matic and bulk viscosity. For avoiding this additional step, a
slightly different choice is adopted and the practical advan-
tages will be discussed by the asymptotic analysis discussed

in the next section—namely,
MD = �
1 1 1 1 1 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 0 0 0 1 − 1 1 − 1

0 1/2 − 1/2 1/2 − 1/2 0 0 0 0

− 2/3 − 1/6 − 1/6 − 1/6 − 1/6 1/3 1/3 1/3 1/3

0 − 1 0 1 0 2 − 2 − 2 2

0 0 − 1 0 1 2 2 − 2 − 2

1 − 2 − 2 − 2 − 2 4 4 4 4

� . �21�
In order to reduce the truncation errors, some relaxation
time constants will be assumed equal to zero: 
�

0 =
�
I =0

because m�
ei=m�

i for i=0,1 ,2 and 
m
0 =0 because mm

e0=m�
0

respectively.
As previously done for the SRT formulation, it is possible

to search for a more compact form. In particular, let us in-
troduce the matrix X�, defined as

X� = MAMD
−1X�

0MDMA
−1, �22�

where X�
0 is a diagonal matrix such as

diag�X�
0� = �1,1,1,��1

II ,��2
II ,��3

II ,��
III,��

III,��
IV�T �23�

and ��j
k =
mj

k / �
�j
k +
mj

k �. It is possible to prove that the fol-
lowing equivalences hold:

E� = �E� + Em��I − X�� , �24�

Em = �E� + Em�X�. �25�

Introducing the previous equivalences in Eq. �20� yields

�m�

�t
+ MAV · �MA

−1 � m�� = �E� + Em��m*
e − m�� ,

�26�

where m*
e = �I−X��m�

e +X�mm
e . Coming back to the discrete

velocity space, the compact form becomes

�f�

�t
+ V · �f� = A*�f*

e − f�� , �27�

where A*=MA
−1�E�+Em�MA and

f*
e = �I − MD

−1X�
0MD�f�

e + MD
−1X�

0MDfm
e . �28�

The matrix A* is singular; then, a pseudoinverse must be
A*
†A* = A*A*

† = I − Q , �29�

where Q=1/9�1 � 1�. This definition differs from that re-
ported Ref. �40�, because the kernel of the generalized matrix
A* is smaller, since the single-species momentum is not con-
served �at least for 
m

I 0�.
In the next section, the asymptotic analysis will be applied

in order to recover the macroscopic equations, which derive
from the generalized MRT formulation of the Hamel model.

III. CONSISTENCY ANALYSIS

A. Limits of the Chapman-Enskog expansion for the
considered model

The compact form given by Eq. �27� allows one to realize
that the leading term of the distribution function is f*

e. Even
though this term is a function of macroscopic quantities only,
unfortunately it is no longer a local Maxwellian centered on
whatever macroscopic velocity. This can be better under-
stood by splitting f*

e according to the order of the monomial
terms with regards to the macroscopic velocity—i.e.,
f*

e = f*
e0+ f*

e1+ f*
e2. In particular, f*

ej =MA
−1m*

ej and

m*
e0 = ���1,0,0,0,�s� − 1�/3,�s� − 1�/3,0,0,�1 − s���T,

�30�

me1 = ���0,ux,uy,0,0,0,0,0,0�T, �31�
*
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m*
e2 = ���

0

0

0

�1 − ��1
II �u�xu�y + ��1

II uxuy

�1 − �3p2�u�x
2 − �3m2u�y

2 + �3p2ux
2 + �3m2uy

2

− �3m2u�x
2 + �1 − �3p2�u�y

2 + �3m2ux
2 + �3p2uy

2

0

0

0

� ,

�32�

where �3p2= ���3
II +��2

II � /2 and �3m2= ���3
II −��2

II � /2.
As far as the monomial terms of f*

e with different orders
with regards to the macroscopic velocity are independently
interpolated, it is evident that this leading distribution cannot
be considered a local Maxwellian centered on any macro-
scopic velocity, deriving from distinct species and mixture
velocity. This could be a problem for the basic assumptions
underlying the Chapman-Enskog procedure. Interpolating
differently the monomial terms with different order will
break the usual symmetry properties of the leading expan-
sion coefficient.

First of all, the leading expansion coefficient is expected
to be a local Maxwellian by the Chapman-Enskog procedure
in order to decouple the equations governing the dynamics of
the expansion coefficients. However, as far as mixture mod-
eling is concerned, it is quite easy to force this condition and
to derive a generalized Chapman-Enskog procedure, because
the residual coupling among the equations governing the dy-
namics of the expansion coefficients must be proportional to
the diffusion velocity and it must produce no effects to the
mixture equations �31�. Another way to bypass the problem
in a more general fashion is to express the corrections to the
leading distribution �whatever it is� by means of the Taylor
expansion coefficients �42�.

Second, the fact that the Chapman-Enskog procedure does
not expand the macroscopic variables but only the distribu-
tion function is well known as an intrinsic advantage of this
technique in terms of simplicity, as well as an intrinsic limit
when compared with more rigorous techniques, like the Hil-
bert expansion �43�. In particular, for the present application,
different macroscopic velocities are involved in the leading
distribution function and different interpolating strategies
may be considered for each term. For this reason, the hy-
pothesis that different scales governing the macroscopic hy-
drodynamic invariants are still well separated seems some-
how doubtful.

Since in the present paper only diffusion phenomena char-
acterized by slow velocities will be considered, a practicable
alternative will be discussed in the next section.

B. Asymptotic analysis of the MRT Hamel model by the
diffusive scaling

For most of the diffusion phenomena, the characteristic
velocities are usually much smaller than the sound speed.

For this reason, the diffusive scaling �44� can be properly
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applied. In the following, a brief analysis of the general
Hamel model by means of the so-called Sone expansion
technique will be reported �44�.

There are three characteristic time scales in this system:
the time scale TC, which properly describes the collision
phenomenon—i.e., O��� /TC�=1; the time scale TF, which
properly describes the particle dynamics on the lattice—i.e.,
O��L /c� /TF�=1 where L is the system size; and, finally, the
time scale TS, which properly describes the slow fluid
dynamics—i.e., O��L /U� /TS�=1. The fast fluid dynamics
�acoustic waves� was neglected. Since a lot of collisions are
needed in order to travel across the system, then TC /TF=�,
where � is a small number. Moreover, since U /c	1, then
TF /TS=� and consequently TC /TS=�2. Once the characteris-
tic time scales are defined, the basic idea is to express the
previous equation in terms of some normalized quantities, in
order to analyze the slow fluid dynamics only. Applying the
diffusive scaling to Eq. �27� yields

�2�f�

�t̂
+ �V̂ · �̂f� = Â*�f*

e − f�� , �33�

where x̂=x /L, t̂= t /TS, Â*=TCA* �which implies Ê�=TCE�

and Êm=TCEm�, and V̂=V /c. Let us introduce the regular
expansion

f� = �
k=0

�

�kf�
�k� �34�

and then, consequently,

m� = �
k=0

�

�km�
�k�. �35�

In particular, for the density and momentum,

�� = �
k=0

�

�k��
�k�, �36�

ĵ� = �
k=0

�

�kĵ�
�k�, �37�

where ĵ�=��û�. Consequently it is possible to define a regu-
lar expansion for the velocity—namely,

û� =
j�

��

=

�
k=0

�

�kĵ�
�k�

�
k=0

�

�k��
�k�

=
ĵ�

�0�

��
�0� + �� ĵ�

�1�

��
�0� −

ĵ�
�0�

��
�0�

��
�1�

��
�0�� + O��2� .

�38�

In the following, the coefficients of the regular expansion for
the momentum ĵ�

�k� will be considered as functions of the
coefficients of the regular expansions for the density and
velocity—i.e., ��

�k� and û�
�k�. This means that the expansion
given by Eq. �37� means
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ĵ� = ��û� = ��
k=0

�

�k��
�k����

k=0

�

�kû�
�k�� = �

k=0

�

�k� �
p+q=k

��
�p�û�

�q�� .

�39�

Introducing the previous expansions in the Eq. �33� yields

�f�
�k�

�t̂
+ V̂ · �̂f�

�k+1� = Â*f*
e0���

�k+2�� + Â* �
p+q=k+2

f*
e1���

�p�,û�
�q��

+ Â* �
p+q+r=k+2

f*
e2���

�p�,û�
�q�,û�

�r�� − Â*f�
�k+2�.

�40�

Conventionally the dependence on the single-species veloc-
ity was explicitly reported, even when the barycentric veloc-
ity appears in the previous expressions, because the barycen-
tric velocity is the mass average of the species velocity.
Since U /c	1, then O��u� /c�=� and consequently û�

�0�=0. It
has been proved �40� that the expansion coefficients of the
moments satisfy the following property:

��
�2n+1� = 0, û�

�2n� = 0 , �41�

for n�0. Taking into account this property, Eq. �40� for
k=−2 yields f�

�0�= f*
e0���

�0��=��
�0�s0, where ��

�0� is unknown. In
order to find what macroscopic equation the function ��

�0�

must satisfy, the equivalent moment formulation with the
diffusive scaling will be considered—namely,

�2�m�

�t̂
+ �MAV̂ · �MA

−1�̂m�� = Ê*�m*
e − m�� , �42�

where Ê*= Ê�+ Êm. In particular, introducing the usual ex-
pansions in the equations for the lower-order moments and
separating the scales yields

���
�k�

�t̂
+ �̂ · �

p+q=k+1
��

�p�û�
�q� = 0, �43�

�ĵ�
�k�

�t̂
+ �̂ · T̂�

�k+1� = 
̂m
I �

p+q=k+2
��

�p��û�q� − û�
�q�� , �44�

where T̂�
�k+1�= V̂ � V̂ � f�

�k+1�. According to the general prop-
erty given by Eqs. �41�, the Eqs. �43� for k=−1, +1 are
meaningless. For k=0, +2, the same equation yields

���
�0�

�t̂
+ �̂ · ���

�0�û�
�1�� = 0, �45�

���
�2�

�t̂
+ �̂ · ĵ�

�3� = 0. �46�

According to the general property given by Eqs. �41�,
Eqs. �44� for k=−2,0 are meaningless. The equations for
k=−1, +1 can be recovered:

�̂ · T̂�0� = 
̂I ��0��û�1� − û�1�� , �47�
� m � �

056705
�

�t̂
���

�0�û�
�1�� + �̂ · T̂�

�2� = 
̂m
I �ĵ�3� − ĵ�

�3�� . �48�

Recalling the definition of f�
�0�, then T̂�

�0�=s� /3��
�0�I and con-

sequently

s�/3�̂��
�0� = − 
̂m

I ��
�0�ŵ�

�1�, �49�

where ŵ�
�1�= û�

�1�− û�1� is the diffusion velocity. Hence in gen-
eral the leading term of the density field is due to the sum of
a constant value ��

0 and a proper field due to the diffusion
velocity ��

D�x̂� satisfying the previous equation—i.e.,
��

�0�=��
0 +��

D�x̂�. Equation �40� for k=−1 yields

f�
�1� = f*

e1���
�0�,û�

�1�� − Â*
†V̂ · �̂f�

�0�, �50�

and recalling the definition of f�
�0�,

f�
�1� = 3��

�0�V̂ · �sI � û�1�� − Â*
†V̂ · �s0 � �̂��

�0�� . �51�

Applying Eq. �49� yields

f�
�1� = 3��

�0�V̂ · �sI � û�1�� + 3��
�0� 
̂m

I

s�

Â*
†V̂ · �s0 � ŵ�

�1��

�52�

and, consequently,

f�
�1� = 3��

�0�V̂ · �sI � û�
�1�� . �53�

This result is identical to that obtained by Junk et al. �40� for
distinct species. Recalling Eq. �40� for k=0 and taking into
account the general property given by Eq. �41�, the last ex-
pansion coefficient can be recovered:

f�
�2� = ��

�2�sI + f*
e2���

�0�,û�
�1�,û�

�1�� − Â*
†� �f�

�0�

�t̂
+ V̂ · ��̂f�

�1��	 .

�54�

Assuming 
̂�2
II = 
̂�1

II and 
̂m2
II = 
̂m1

II yields

T̂�
�2� = � s�

3
��

�2� +
�2 − s��

3�
̂�3
II + 
̂m3

II �

���
�0�

�t̂ �I + �1 − ��1
II ���

�0�u�
�1�

� u�
�1� + ��1

II ��
�0�u�1�

� u�1� −
1

3�
̂�1
II + 
̂m1

II �
��̂���

�0�û�
�1��

+ �̂���
�0�û�

�1��T − �̂ · ���
�0�û�

�1��I + �3m1��
�0���û�1��2

− �û�
�1��2I , �55�

where �3m1= ���3
II −��1

II � /2. In order to ensure the Galilean
invariance of the pressure, �3m1=0 is assumed and this
implies


̂�3
II


̂m3
II

=

̂�1

II


̂m1
II

. �56�

The asymptotic analysis allows us to define some constraints
in the relaxation time constants in order to ensure the desired
structure of the macroscopic equations. Taking into account

these assumptions, Eq. �48� explicitly becomes
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�

�t̂
���

�0�û�
�1�� + �̂ · ��1 − ��1

II ���
�0�û�

�1�
� û�

�1� + ��1
II ��

�0�û�1�

� û�1�� + s�/3�̂��
�2� = �̂ · ��̂�m�̂���

�0�û�
�1��

+ �̂�m���
�0��̂û�

�1��T + �̂��̂�m�̂ · ���
�0�û�

�1��

+
s�

3D̂�

�ĵ�3� − ĵ�
�3��, , �57�

where D̂�, �̂�m, and �̂�m are, respectively, the dimensionless
species diffusivity, the kinematic viscosity, and the second
coefficient of the kinematic viscosity for the generic species
of the mixture, defined as

D̂� =
s�

3
̂m
I

, �58�

�̂�m =
1

3�
̂�1
II + 
̂m1

II �
, �59�

�̂�m =
2 − s�

3�
̂�3
II + 
̂m3

II �
−

1

3�
̂�1
II + 
̂m1

II �
. �60�

Collecting the previous results yields

�2 �

�t̂
���

�0� + �2��
�2�� + ��̂ · ����

�0�û�
�1� + �3ĵ�

�3�� = 0, �61�

�2 �

�t̂
����

�0�û�
�1�� + ��̂ · ��2�1 − ��1

II ���
�0�û�

�1�
� û�

�1�

+ �2��1
II ��

�0�û�1�
� û�1�� + �s�/3�̂���

�0� + �2��
�2��

= ��̂��̂�m��̂ · ����
�0�û�

�1��� + ��̂ · ��̂�m��̂����
�0�û�

�1��

+ �̂�m��̂����
�0�û�

�1��T +
s�

3D̂�

���
�0��û�1� − ��

�0��û�
�1� + �3ĵ�3�

− �3ĵ�
�3�� . �62�

Taking into account that t̂= t /TS, x̂=x /L, and û�
�1�=u�

�1� /c, it
is possible to come back to the original quantities expressed
in physical units. Hence, introducing the auxiliary quantities
��=��

�0�+�2��
�2� and ũ�=�u�

�1�, it is easy to verify that they
satisfy the following system of equations:

��̃�

�t
+ � · ��̃�ũ�� = 0, �63�

�

�t
��̃�ũ�� + � · ��1 − ��1

II ��̃�ũ� � ũ� + ��1
II �̃�ũ � ũ�

= − �p̃� + ����m � · ��̃�ũ��� + � · ���m � ��̃�ũ��

+ ��m � ��̃�ũ��T� −
e�

D�

�̃��ũ� − ũ� + O�ũ�
3� , �64�

˜ ˜ 2 ˆ 2ˆ
where p�=e���, D�=TCc D�, ��m=TCc ��m, and

056705
��m=TCc2�̂�m. Equivalently we can say that �̃� and ũ�, col-
lecting the terms of the numerical solution up to second or-
der with regards to the expansion parameter �, satisfy the
Navier-Stokes system of equations with second-order accu-
racy in space and first-order accuracy in time, because
O��t /�x�=�.

Obviously summing the governing equations for the
single species should yield the mixture equations governing
the total density and the barycentric velocity. This implies

��1
II =1—i.e., 
̂�1

II =0—and consequently 
̂�3
II =0, taking into

account Eq. �56�. The previous assumptions essentially mean
that f*

e = fm
e , coherently with the single-fluid approach. This

remarkable result was obtained by simply imposing that �a�
the pressure must be Galilean invariant and that �b� summing
the nonlinear inertial tensor for each species must produce
the same term for the mixture. The previous compatibility
conditions essentially reduce the Hamel model to the same
basic model considered by the single-fluid approach. The
compatibility conditions remind us that a collision operator
involving the local Maxwellian centered on the barycentric
velocity—i.e., fm

e —is the only choice consistent with the
continuous kinetic theory �45�. The practical advantage of
the proposed model still remains the multiple-relaxation-time
formulation, which allows one to tune independently the dif-
fusion coefficient and the viscosity coefficients. For this rea-
son, the claimed main advantage of the multiple-fluid ap-
proach �28�—i.e., independently tuning the macroscopic
transport coefficients—can be easily recovered in the frame-
work of the single-fluid approach by considering the MRT
formulation.

Finally the last condition required for ensuring the consis-
tent system of equations for the barycentric velocity is that
��m=�m and ��m=�m for all species. This implies

1


m3
II =

3

2 − s�
��m

c2 +
1

3
m1
II � . �65�

In this way, the final set of equations for the barycentric
quantities can be recovered:

��̃

�t
+ � · ��̃ũ� = 0, �66�

�

�t
��̃ũ� + � · ��̃ũ � ũ� = − �p̃ + ���m � · ��̃ũ��

+ � · ��m � ��̃ũ� + �m � ��̃ũ�T� ,

�67�

where p̃=��p̃� is the total pressure.
Before proceeding with the numerical integration, as an

example, how tuning the transport coefficients for binary
mixtures will be discussed.

1. Binary mixtures: Tuning strategy for the mutual diffusivity

Up to now, the diffusion phenomenon was modeled by
means of the species diffusivity: in this section, how this
concept is related to the mutual diffusivity is outlined. The

leading term of Eq. �64� is
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�̃�w̃� � − D� � �̃�, �68�

which can be considered as the definition of the species dif-
fusivity D� depending on the distinct species molecular
weight. Since D�=e� /
m

I , then


m
I �ũ� − ũ� � −

e�

�̃�

� �̃�. �69�

For explaining how the species diffusivity is related to the
mutual diffusivity D, which is the same for all the compo-
nents of the mixture, let us consider a binary mixture made
of particles A and particles B as a meaningful example. Tak-
ing the difference between the two expressions derived from
the generic equation �69� for species A and B yields


m
I �ũA − ũB� = −

p̃�̃

�̃A�̃B

dAB, �70�

where MA and MB are the molar weights for the two species,
M is the molar weight for the mixture, defined as

M =
1

xA/MA + xB/MB
, �71�

and, finally, the driving force is

dAB =
�̃A�̃B

p̃e�
� 1

�̃A

� ��̃AeA� −
1

�̃B

� ��̃BeB�� . �72�

Introducing the molar concentrations, defined as yA= ñA / ñ
and yB= ñB / ñ where ñA and ñB are the number densities for
the two species, and recalling that for a binary mixture
�yB=−�yA yields

dAB = �yA +
ñAñB

�̃ñ

�MB − MA�
ñ

� ñ . �73�

We can attribute the discrepancy in the species velocities
�ũA− ũB� to two different driving mechanisms: the molar
concentration gradients and the pressure gradient �which is
proportional to the mixture number density for ideal gases�
by means of different molar weights �MA�MB�. The diffu-
sions driven by these driving mechanisms are called the or-
dinary diffusion and the pressure diffusion, respectively.

The mutual diffusivity can be defined by means of the
following relation:

�ũA − ũB� = −
ñ2

ñAñB

DdAB. �74�

Comparing Eqs. �74� and �70� yields

D =
p̃�̃


m
I ñ2MAMB

=
RT/
m

I

xAMB + xBMA
, �75�

where R is the universal gas constant and T is the tempera-
ture. The previous expression allows one to tune the relax-
ation frequency 
m

I in order to recover the experimental data
concerning the mutual diffusivity D. A very popular �kineti-
cally derived� formula for the mutual diffusivity �46� is
056705
D� =
C�

p̃�AB
2 �D

�T3 MA + MB

MAMB
, �76�

where C� is a proper dimensional constant, �AB is the char-
acteristic length �arithmetic average of the molecular colli-
sion diameters�, and finally �D is the collision integral �func-
tion of the temperature and the interaction potential�. As
outlined by means of the asymptotic analysis, the leading
term of the total pressure p̃�0� is essentially constant. This
means that, for isothermal conditions, Dk can be approxi-
mated as a constant as well. Consequently tuning 
m

I in such
a way to ensure D=D� implies that 
m

I should depend on the
actual mass concentrations. This is not a theoretical problem
because the relaxation frequencies involved in the BGK-like
collisional operators may depend on any combination of the
macroscopic moments �as it happens for the mass concentra-
tion�. This simply forces us to recalculate the relaxation fre-
quency 
m

I �xA� for each cell during the calculation, according
to the actual value of the local mass concentration, and then
to increase substantially the computational demand. How-
ever, these additional computations can be avoided if the
mass concentration in the computational domain slightly var-
ies around an average value xA

0 , which can be assumed fixed
for approximating 
m

I �xA
0� once for all.

Some final remarks for modeling large particle mass ra-
tios are reported. The distinct species diffusivity D� depends
on the particle molecular weight, while the mutual diffusivity
D is the same for all the mixture components. The tunable
parameter s� allows one to tune the distinct species
diffusivity—i.e., to take into account the effects due to the
molecular weight on the diffusion dynamics. Tuning properly
this parameter, it is easy to deal with mass particle ratios in
the mixture far from unit. Selecting the equilibrium distribu-
tion function in such a way that the distinct species diffusiv-
ity can be independently adjusted is not a new idea, and it
derives from the common practice using the same approach
for tuning the actual equation of state �see, for example, �47�
for a recent implementation of this idea�. In particular the
approach proposed in the present paper is much simpler than
that discussed in �47� and referred as “same lattice speed”
�SLS�, because it allows one to model particles with different
molecular weights on the same lattice. Unlike the algebraic
procedure proposed in the cited paper, the corrective factor
s�, involved in the effective weight vector given by Eq. �9�,
has a simple physical interpretation. In fact the ratio between
the number of moving particles and the total number of par-
ticles in equilibrium conditions can be expressed as

� =
5/9s�

�1 − 5/9s�� + 5/9s�

=
5

9
s�, �77�

which is simply proportional to s�. The common definition
of the equilibrium distribution function implies s�=1 and
consequently �=5/9, which means that, in equilibrium con-
ditions, the moving particles are slightly more than the par-
ticles at rest. Selecting s��1 is possible to increase the num-
ber of moving particles over the total and this can yield to
instability. On the other hand, selecting s��1 increases the

stability of the calculation by reducing the actual updating
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rate during each time step. For dealing with large mass
particle ratios, it is enough to select sA=1 if A is the species
characterized by the smallest molecular weight and conse-
quently by the fastest dynamics in order to be sure than
s��sA=1 for all the other species. Obviously this could in-
crease the computational time for the whole simulation but at
least this strategy ensures a stable solution process. Actually
the computation time can be effectively reduced by a semi-
implicit-linearized formula. Some numerical tests confirming
this technique are reported in Sec. V D.

2. Binary mixtures: Tuning strategy for the mixture kinematic
viscosity

We can proceed in a very similar way for the mixture
viscosities. In the low-Mach-number limit, the essential role
is played by the mixture kinematic viscosity, which will be
discussed in this section. According to the previously dis-
cussed derivation process, in the proposed model the kine-
matic viscosity is

�m =
c2

3
m1
II . �78�

The previous expression allows one to tune the relaxation
frequency 
m1

II in order to recover the experimental data con-
cerning the mixture kinematic viscosity �m. A very popular
�experimental� formula for the mixture kinematic viscosity is
�46�

�m� =
xA�A

1 + FAB�MA/MB��xB/xA�
+

xB�B

1 + FBA�MB/MA��xA/xB�
,

�79�

where FAB and FBA are positive corrective factors. In particu-
lar the experimental data show that the effective kinematic
viscosity for the mixture is smaller than the averaged viscos-
ity based on the mass concentrations of the components
�m� ���x���. This means that the actual mixture kinematic
viscosity is a function of the mass concentration xA—namely,
�m� �xA�. In particular the fact that �m� �0�=�B and �m� �1�=�A

ensures the required consistency with the single-species case,
because the mixture kinematic viscosity reduces to the
disting species viscosity of the residual component. Since
for binary mixtures also the barycentric velocity
u�xA�—reduces to the actual velocity of the residual
component—i.e., ũ�0�= ũB and ũ�1�= ũA—then the single-
species momentum equation is correctly recovered. Again
tuning 
m1

II in such a way to ensure �m=�m� implies that 
m1
II

should depend on the actual mass concentration. Even
though the same considerations discussed in the previous
section hold, neglecting the dependence on the mass concen-
tration in this case will not allow us to be consistent any
more with the single-species case, at least as far as the cor-
rect transport coefficients in the momentum equation are
concerned.

In the next section, some integration formulas will be
compared in order to analyze the performance of the numeri-
cal implementations of the previous model.
056705-
IV. NUMERICAL IMPLEMENTATION

A. Semi-implicit formulation

Let us introduce the one-dimensional array f���t̂ , X̂�
= �f�

i �t̂ , X̂Tê�i��, where f��t̂ , x̂� is the usual distribution vec-
tor at the generic time t̂ and for the generic point x̂ and
ê�i��R9 is the unit vector for the ith generic lattice velocity.

For definition, it is easy to verify that f���t̂ ,1 � x̂�= f��t̂ , x̂�.
The arrow notation was selected for pointing out that the

vector f�� collects the components of the discrete distribution
functions of neighboring cells, according to the considered
direction of the lattice.

Equation �27� can be expressed as

D

Dt̂c

f���t̂c,X̂c� = Â*�f�*
e�t̂c,X̂c� − f���t̂c,X̂c�� , �80�

where X̂c=1 � x̂c, x̂c is the generic location divided by the
spatial discretization step x̂c=x /�x, and t̂c is the generic time
divided by the time step t̂c= t /�t.

Since a fixed set of lattice velocities is considered, the
theory of characteristics is highly simplified for the lattice
Boltzmann method and hence it becomes particularly advan-
tageous for the discretization. However, it is well known that
this is not mandatory �48�. In fact a Eulerian interpretation of
the previous equations allows one to independently discretize
the spatial and time derivatives. This is particularly advanta-
geous for enhancing the accuracy of the spatial discretization
without increasing the number of time steps. The Eulerian
formulation will be presented first, while the conventional
Lagrangian formulation will be presented in the next
sections.

Let us store all the components of f��t̂c , x̂c� of all grid

nodes x̂c in a one-dimensional array f̄��t̂c� using an appropri-
ate ordering. The overbar notation was selected for pointing
out that all the computational cells are considered in the

one-dimensional vector f̄�, which is actually much larger
than the single-cell vector f� because of the mesh size. Ap-
plying a proper spatial discretization formula yields

d

dt̂c

f̄��t̂c� + M̄Af̄��t̂c� = Ā*�f̄*
e�t̂c� − f̄��t̂c�� , �81�

where Ā*=blkdiag�Â*� is the block-diagonal matrix obtained

by the concatenation of the matrix Â* and M̄A is the advec-
tion operator due to the considered spatial discretization for-
mula. The equilibrium distribution vector can be split, taking
into account the order of the involved terms with regards to
the macroscopic velocity. Moreover, the terms which do not
depend or linearly depend on the velocity can be expressed
by means of the operators Me0 and Me1—namely,

f*
e0�t̂c, x̂c� = Me0f��t̂c, x̂c� , �82�

f�
e1�t̂c, x̂c� = MA

−1���0,u�x,u�y,0,0,0,0,0,0�T = Me1f��t̂c, x̂c� ,
�83�
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fmm
e1 �t̂c, x̂c� = MA

−1��0,ux,uy,0,0,0,0,0,0�T = Me1�
�

f��t̂c, x̂c� ,

�84�

f*
e1�t̂c, x̂c� = MA

−1���0,ux,uy,0,0,0,0,0,0�T

= x��t̂c, x̂c�Me1�
�

f��t̂c, x̂c� , �85�

where x�=�� /� is the mass concentration. Introducing the
previous operators in Eq. �81� yields

d

dt̂c

f̄��t̂c� = �Ā*M̄e0 − M̄A − Ā*�f̄��t̂c� + Ā*M̄e1
� �

�

f̄��t̂c�

+ Ā*f̄*
e2�t̂c� , �86�

where M̄e0=blkdiag�Me0� and M̄e1
� =blkdiag�x�Me1�. Apply-

ing a proper multistep time discretization formula yields

�
n=0

Ns

M̄nf̄��t̂c − n� = − M̄A��Af̄��t̂c� + �1 − �A�f̄��t̂c − 1��

+ Ā*�M̄e0 − Ī���0f̄��t̂c� + �1 − �0�f̄��t̂c − 1��

+ Ā*��1M̄e1
� �t̂c� + �1 − �1�M̄e1

� �t̂c − 1��

��
�

��1f̄��t̂c� + �1 − �1�f̄��t̂c − 1��

+ Ā*��2f̄*
e2�t̂c� + �1 − �2�f̄*

e2�t̂c − 1�� , �87�

where Ns is the number of time steps and M̄n are the matrices
due the considered time integration formula. Even though the
previous formulation is not the most general, it allows one to
discuss some approaches proposed in literature.

�i� If one assumes �A=�0=�1=�2=0, then the conven-
tional fully explicit approach �E� is recovered. In this case,
the integration process is explicitly time marching and only
the results due to the previous iterations are needed in order
to compute the next time step. This approach is very simple
to implement but requires that the relaxation frequencies be
smaller than a given stability threshold and this could dra-
matically increase the computational time—for example,
dealing with reactive mixtures characterized by very small
reaction rates.

�ii� The simple remedy to the previous problem is
obviously the fully implicit approach �I�, which means
�A=�0=�1=�2=1. The idea for the lattice Boltzmann
method was proposed some time ago �10,49,50�, and it en-
joyed some moderate success in applications �51–55�. The
stability threshold for the relaxation frequencies completely
disappears, but the additional computations required by solv-
ing a global nonlinear set of equations can sometimes reduce
the practical advantage. For simulating a given time frame of
the physical problem, one needs fewer time steps but each
one of them is longer to be computed. In particular, it has
been shown that the practical advantage due to the implicit
formulation in avoiding any stability threshold can be some-
times overcome by the increased computational demand

�56,57�.
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�iii� Some approaches in between were proposed too.
The main drawbacks of the fully implicit approach is that
it must deal with a global nonlinear set of equations. The
set of equations is global because of the advection term—

i.e., M̄A. Some papers �58,59� proposed a semi-implicit non-
linear approach �SINL�, which means �A=0 and �0=�1=�2
=1, with the advantage that the nonlinear system to be
solved is local and hence much smaller, since the advection
part is solved explicitly. However, during the computation of
each cell a small nonlinear set of equations must be solved
and the final effect on the computational demand can be still
relevant.

�iv� Actually according to the asymptotic analysis dis-
cussed in the previous section, the quadratic term involved in
the generalized equilibrium distribution function—i.e.,
f*

e2—does not affect too much the macroscopic equations. In
particular, this term will determine the second-order expan-
sion coefficient f�

�2� and consequently the nonlinear inertial
term in the macroscopic momentum equation. It is easy to
verify that an error O��� in dealing with f*

e2 does not produce
any effect on the macroscopic equations if terms O��3� are
neglected �consistently with the discussed accuracy goals�.
For this reason in this paper, we propose a SIL approach,
which means �A=�2=0 and �0=�1=1. In this way, the most
important terms in the collision operator effecting the stabil-
ity are still solved implicitly but the operative matrices can
be derived once for all at the beginning of the calculation by
means of simple algebra.

B. Memory-optimized (single-step) integration formulas

As previously discussed referring to the Eulerian interpre-
tation of the lattice Boltzmann method, the practical advan-
tage of independently discretizing the spatial and time de-
rivatives holds for Ns=1—i.e., single-step integration
formulas—because in this case only the results due to the
previous iteration must be stored in memory.

Let us store all the components of f���t̂c ,1 � x̂c− V̂c� of all

grid nodes x̂c in a one-dimensional array f̄�
up�t̂c�. Let us in-

troduce the up-wind operator—namely,

f̄�
up�t̂c� = M̄upf̄��t̂c� . �88�

In the same way, it is possible to introduce the down-wind
operator—namely,

f̄�
dw�t̂c� = M̄dwf̄��t̂c� , �89�

where f̄�
dw�t̂c� is the one-dimensional array storing all the

components of f���t̂c ,1 � x̂c+ V̂c�. A possible choice for the
advection matrix ensuring third-order accuracy is

M̄A =
1

3
M̄dw +

1

2
Ī − M̄up +

1

6
M̄up

2 . �90�

1. General diffusion phenomena

Approximating the time derivative by means of the

Euler formula—i.e., M̄ =−M̄ = Ī—and assuming the
0 1
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semi-implicit-linearized formulation—i.e., �A=�2=0 and
�0=�1=1—yields

f̄��t̂c� − Ā*�M̄e0 − Ī�f̄��t̂c� − Ā*M̄e1
� �t̂c��

�

f̄��t̂c�

= �Ī − M̄A�f̄��t̂c − 1� + Ā*f̄*
e2�t̂c − 1� . �91�

Summing over all the species it is possible to derive the
operative formula for updating the mixture distribution func-
tion during each time step—namely,

�
�

f̄��t̂c� = �Ī − Ā*�M̄e0 − Ī� − Ā*M̄e1�t̂c��−1

��Ī − M̄A��
�

f̄��t̂c − 1� + Ā*�
�

f̄*
e2�t̂c − 1�� , �92�

where M̄e1=blkdiag�Me1�. Once the mixture distribution
function was computed, the final operative formula for the
distinct species distribution function is

f̄��t̂c� = �Ī − Ā*�M̄e0 − Ī��−1

��Ī − M̄A�f̄��t̂c − 1� + Ā*M̄e1
� �t̂c��

�

f̄��t̂c� + Ā*f̄*
e2�t̂c − 1�� ,

�93�

where ��f̄��t̂c� is computed by means of Eq. �92�. The pre-
vious scheme will be referred in the following as SBDF3,
meaning a simplified version of the backward differentiation
formula �BDF� with third order, which will be discussed in
the next section. In fact, as the third-order BDF, the present
formula involves the values of the distribution function in
four spatial locations, but at the same time �and this is the
advantageous difference�. Actually the name would be not
completely appropriate because the advection discretization

given by matrix M̄A is not completely “backward,” since also
a down stream location was considered for stability reasons.

2. Simple diffusion phenomena

If the total pressure gradient acting on the mixture is small
and there is no external force, the barycentric velocity is very
small and it can be neglected. In this case, the set of equa-
tions �86� can be simplified—namely,

d

dt̂c

f̄��t̂c� = R̄f̄��t̂c� , �94�

where R̄= Ā*M̄e0−M̄A− Ā*. In this case, any Runge-Kutta
methods can be fruitfully applied. In the following sections,
the implicit Runge-Kutta-Gauss method with forth order ac-
curacy will be considered �RKG4�.

C. Speed-optimized (multiple-step) integration formulas

In order to reduce the computational demand, the theory
of characteristics, which is simplified in the framework of

the lattice Boltzmann Method, will be considered again, be-
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cause it allows one to discretize the inertial and advection
terms at the same time.

Let us introduce the operator F� ��t̂ , X̂�= �f�
j �t̂ , X̂Tê�i��

for the actual values of the distribution functions and

F� *
e�t̂ , X̂�= �f*

ej�t̂ , X̂Tê�i�� for the equilibrium values of the
distribution functions. For definition, it is easy to verify that

F� ��t̂ ,1 � x̂�=1 � f��t̂ , x̂� and a similar expression holds for
the equilibrium operator.

Moving along the characteristics defined by the lattice
velocities, the set of equations �80� can be immediately con-
sidered as a set of ordinary differential equations. This set
can be discretized by any multistep formula—namely,

�
n=0

Ns

�nf���t̂c − n,X̂c − nV̂�

= − Â* · ��0F� ��t̂c,X̂c� + �1 − �0�F� ��t̂c − 1,X̂c − V̂�

− �
k=0

2

��kF� *
ek�t̂c,X̂c� + �1 − �k�F� *

ek�t̂c − 1,X̂c − V̂��	 .

�95�

Even though the previous formulation is not completely
general, it allows one to recover the following schemes: �i�
forward Euler �FE�, which means Ns=1, �0=1, �1=−1,
and �0=�1=�2=0; �ii� backward Euler �BE�, which means
Ns=1, �0=1, �1=−1, �0=�1=1, and �2=0; �iii� backward
differentiation formula with second-order accuracy �BDF2�,
which means Ns=2, �0=3/2, �1=−2, �2=1/2, �0=�1=1,
and �2=0; �iv� backward differentiation formula with third-
order accuracy �BDF3�, which means Ns=3, �0=11/6,
�1=−3, �2=3/2, �3=−1/3, �0=�1=1, and �2=0.

D. Semi-implicit-linearized backward-Euler formula

None of the previously discussed scheme is completely
suitable for dealing with mixture modeling in very large ap-
plications. The ideal scheme for solving the lattice Boltz-
mann equation should be �i� consistent at least up to the
second or third order in space, for correctly solving the
Navier-Stokes equations up to the second order in space for
the mixture alone or the mixture together with each distinct
species, respectively �see the asymptotic analysis for the dis-
crete model in the next section: in order to recover correctly
the momentum equation for each distinct species, an addi-
tional accuracy is required because ��

�0� is no more constant�;
�ii� stable for a large range of dimensionless relaxation fre-

quencies �
̂�, allowing one to consider large time step and/or
large discrepancies in the macroscopic transport coefficients
�this condition is essentially satisfied by implicit and semi-
implicit schemes�; �iii� local—namely, requiring a very small
amount of information from the neighboring cells in order to
reduce the communication demand in parallel implementa-
tions �roughly speaking the communication demand linearly
increases with the number of neighboring locations required

by the scheme�.
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Without entering too much in details, the scheme FE is
local but not widely stable neither accurate �if we neglect for
a while the usual practice of incorporating the discretization
error in the transport coefficients�. The scheme BE is local
and widely stable, but it is characterized by the same mod-
erate accuracy of the previous one. Finally, the schemes
RKG4, BDF2, and BDF3 are not local but they ensure wide
stability and good accuracy.

Actually SBDF3 seems a promising idea for recovering
the desired accuracy because it introduces some errors in the
estimation of the time derivatives only, which are character-
ized by a slow dynamics O��2�, as far as the diffusive scaling
is concerned. Unfortunately SBDF3 is not local or widely
stable, as will be outlined by means of numerical simula-
tions.

In the following, a scheme is proposed called the semi-
implicit-linearized backward-Euler formula, which is essen-
tially a semi-implicit formulation of the backward Euler for-
mula with some proper corrections in order to increase the
accuracy. According to this technique, the operative formula
is

f��t̂c, x̂c� − f���t̂c − 1,X̂c − V̂� = Â*�f*
e0�t̂c, x̂c� + f*

e1�t̂c, x̂c�

+ f*
e2�t̂c − 1, x̂c� − f��t̂c, x̂c�

+ k�t̂c, x̂c�� , �96�

where

k�t̂c, x̂c� = ��MA
−1�0, b̂x, b̂y,0,0,0,0,0,0�T �97�

and b̂ is a forcing term which is proportional to the actual

value of the diffusion velocity—namely, b̂=−m��ŵ� with m
as a freely tunable parameter �first correction�. This means
that the first-order terms with regards to the macroscopic
velocities can be grouped together—namely,

f*
e1�t̂c, x̂c� + k�t̂c, x̂c� = ��MA

−1�0,�1 + m�ûx − mû�x, ûy

− mû�y,0,0,0,0,0,0�T

= �1 + m�x��t̂c, x̂c�fmm
e1 �t̂c, x̂c�

− mf�
e1�t̂c, x̂c� , �98�

where fmm
e1 �t̂c , x̂c�=Me1��f��t̂c , x̂c�. Coherently with the semi-

implicit-linearized approach, the actual mass concentration
x��t̂c , x̂c� could represent a problem because it involves the
single-species density at the new time step. This means that
in the updating equation �time marching equation� for the
single species, a macroscopic moment of the same species
appears at the new time step, which is still unknown. Fortu-
nately the collision step preserves the total number of par-
ticles �due to the continuity constraint� and the new species
density can be easily computed by means of the post-
streaming values of the discrete distribution function. The
previous expression can be written as
056705-
f*
e1�t̂c, x̂c� + k�t̂c, x̂c�

= Me1��1 + m�x��t̂c, x̂c��
�

f��t̂c, x̂c� − mf��t̂c, x̂c�� .

�99�

Introducing the previous expressions into Eq. �96� and sum-
ming over the species yields

�
�

f��t̂c, x̂c� = BS�
�

f���t̂c − 1,X̂c − V̂� + BQ�
�

f*
e2�t̂c − 1, x̂c� ,

�100�

where

BS = �I − Â*�Me0 − I� − Â*Me1�−1 �101�

and BQ=BSÂ*. Equation �100� is the operative time march-
ing formula for updating the mixture distribution function: it
is worth the effort to point out that, on the right-hand side of
this equation, only the information of the neighboring cells at
the previous time step is needed. Once the term ��f��t̂c , x̂c� is
known, then it is possible to compute the species
dynamics—namely,

f��t̂c, x̂c� = SSf���t̂c − 1,X̂c − V̂� + SQf*
e2�t̂c − 1, x̂c�

+ x��t̂c, x̂c�SC�
�

f��t̂c, x̂c� , �102�

where

SS = �I − Â*�Me0 − I� + mÂ*Me1�−1, �103�

SQ=SSÂ*, and SC= �1+m�SSÂ*Me1. Also, for the distinct
species dynamics, the operative time marching formula only
depends on the information of the neighboring cells at the
previous time step. The matrix SC represents the coupling
due to cross collisions governing the diffusion process.
Moreover, the matrices BS, BQ, SS, SQ, and SC are small
matrices ��R9�9� which depend only on the dimensionless

relaxation frequencies �
̂�: hence they can be computed once
for all at the beginning of the calculation, being the same for
all the cells.

In the next section, the suitability of the SILBE scheme
for solving the Navier-Stokes equations for mixture model-
ing will be proved by means of the asymptotic analysis.

E. Asymptotic analysis of the MRT Hamel model integrated
by the SILBE formula

Let us analyze the SILBE scheme by means of the
asymptotic analysis. Applying the Taylor expansion yields

f���t̂c − 1,X̂c − V̂� = f��t̂c, x̂c� + �
k=1

�

�− �/�t̂c − V̂ · �̂c�kf��t̂c, x̂c� ,

�104�
13
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f*
e2�t̂c − 1, x̂c� = f*

e2�t̂c, x̂c� + �
k=1

�

�− �/�t̂c�kf*
e2�t̂c, x̂c� .

�105�

It is worth the effort of recalling that both time t̂c and
space x̂c are the dimensionless quantities used in the code.
However, this dimensionless coordinates are not representa-
tive of the physical dynamics described by the diffusive scal-
ing or, equivalently, if the diffusive scaling holds, then
O�t̂c��1 and O�x̂c��1. For this reason, recalling that

tc= t̂ /�2 and X̂c= X̂ /�, it is possible to rewrite the previous
Taylor expansions as

f���t̂/�2 − 1,X̂/� − V̂�

= f��t̂/�2, x̂/�� + �
k=1

�

�− �2�/�t̂ − �V̂ · �̂�kf��t̂/�2, x̂/�� ,

�106�

f*
e2�t̂/�2 − 1, x̂/�� = �

k=0

�

�2k�− �/�t̂�kf*
e2�t̂/�2, x̂/�� . �107�

First of all, introducing the previous expansions in Eq. �96�
allows one to express the finite-difference operative formula
by means of differential operators—namely,

− �
k=1

�

��kDk�− �/�t̂,− V̂ · �̂�f� + �2kÂ*�− �/�t̂�kf*
e2�

= Â*�f*
e − f� + k� , �108�

where Dk�x1 ,x2� are polynomials defined as D0�x1 ,x2�=0
and

Dk�x1,x2� = �
2a+b=k�1

x1
ax2

b

a!b!
. �109�

Separating the scales yields

− �
p+q=k+2

Dp�− �/�t̂,− V̂ · �̂�f�
�q�

− �
p+q+r+2s=k+2

Â*�− �/�t̂�sf*
e2���

�p�,û�
�q�,û�

�r��

= Â*f*
e0���

�k+2�� + Â* �
p+q=k+2

f*
e1���

�p�,û�
�q��

− Â*f�
�k+2� + Â*k�k+2� �110�

or, explicitly,

f�
�k+2� = �

p+q+r+2s=k+2
�− �/�t̂�sf*

e2���
�p�,û�

�q�,û�
�r�� + f*

e0���
�k+2��

+ �
p+q=k+2

f*
e1���

�p�,û�
�q��

+ Â*
† �

p+q=k+2
Dp�− �/�t̂,− V̂ · �̂�f�

�q� + k�k+2�, �111�
where
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k�k+2� = − m �
p+q=k+2

�f�
e1���

�p�,û�
�q�� − f*

e1���
�p�,û�

�q�� .

�112�

Equation �111� describes how the generic expansion coef-
ficient f�

�k+2� depends on the actual values of the macroscopic
moments and their time and space derivatives.

Since we are interested in recovering the macroscopic
equations for the hydrodynamic conserved moments, it is
useful to consider the equivalent formulation in the moment
space, involving the expansion coefficients of the moments,
given by

− �
p+q=k+2

MADp�− �/�t̂,− V̂ · �̂�f�
�q�

= Ê*m*
e0���

�k+2�� + Ê* �
p+q=k+2

m*
e1���

�p�,û�
�q��

+ Ê* �
p+q+r+2s=k+2

�− �/�t̂�sm*
e2���

�p�,û�
�q�,û�

�r��

− Ê*m�
�k+2� + MAÂ*k�k+2�. �113�

In particular we are interested in the lower-order expansion
coefficients for the hydrodynamic moments only. For
k=0, +2, the effects to the continuity equation are recovered:

���
�0�

�t̂
+ �̂ · ���

�0�û�
�1�� −

s�

6
�̂2��

�0� = 0, �114�

���
�2�

�t̂
+ �̂ · ĵ�

�3� −
s�

6
�̂2��

�2� − 1 � �D3�− �/�t̂,− V̂ · �̂�f�
�1�

+ D4�− �/�t̂,− V̂ · �̂�f�
�0�� = 0, �115�

Similarly the effects to the momentum equation for
k=−1, +1 are recovered:

s�/3�̂��
�0� = − �1 + m�
̂m

I ��
�0�ŵ�

�1�, �116�

�̂ · T̂�
�2� − V̂ � �D2�− �/�t̂,− V̂ · �̂�f�

�1� + D3�− �/�t̂,

− V̂ · �̂�f�
�0��

= 
̂m
I �ĵ�3� − ĵ�

�3�� + 
̂m
I V̂ � k�3�. �117�

After some simple algebra, the final form of Eq. �117� yields

�

�t̂
���

�0�û�
�1�� + �̂ · T̂�

�2� − �̂ · �1

2
V̂ � V̂ � �V̂ · �̂f�

�1�� + V̂ � V̂

�
�f�

�0�

�t̂
−

1

6
V̂ � V̂ � �V̂ · �̂�V̂ · �̂f�

�0���	
= 
̂m

I �ĵ�3� − ĵ�
�3�� + 
̂m

I V̂ � k�3�. �118�

If the discrete scheme is compared with the continuous
model, the first obvious result is that the same zeroth-order
expansion coefficient f�

�0� is recovered. Even though it is less
obvious, the same conclusion still holds for the first-order

�1�
expansion coefficient f� . It is easy to recover the latter result
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by recalling the general equation �111� for the case
k=−1—namely,

f�
�1� = 3��

�0�V̂ · �sI � û�
�1�� − 3


̂m
I

s�

Â*
†V̂ · �s0 � b̂�1�� + k�1�,

�119�

which after some algebra yields

f�
�1� = ��MA

−1�0, û�x, û�y,0,0,0,0,0,0�T. �120�

This means that the artificial forcing term introduced by the
first correction needed to derive the SILBE scheme does not
effect the first-order expansion coefficient f�

�1�. The additional
forcing term produces a direct effect in the momentum equa-
tion, but it does not modify the dynamics of the first-order
expansion coefficient. However, this direct effect in the mo-
mentum equation will be used to improve the accuracy of the
scheme with regards to the continuity equation. In order to
achieve this goal, the single species velocity must be rede-
fined �this is the second correction�—namely,

û�
* = û� + nŵ�, �121�

where n is a tunable parameter. It is easy to verify that inde-
pendently of the value of the parameter n, the barycentric
velocity does not need to be redefined—namely, û*= û. In-
troducing the previous expression in Eqs. �114� and �119�
yields

���
�0�

�t̂
+ �̂ · ���

�0�û�
*�1� + ��

�0�ŵ�
*�1�� 
̂m

I

2
�1 + m

1 + n
� −

n

1 + n
�	 = 0,

�122�

s�/3�̂��
�0� = − 
̂m

I ��
�0��1 + m

1 + n
�ŵ�

*�1�. �123�

Tuning n=m= 
̂m
I / �2− 
̂m

I � yields

���
�0�

�t̂
+ �̂ · ���

�0�û�
*�1�� = 0, �124�

s�/3�̂��
�0� = − 
̂m

I ��
�0�ŵ�

*�1�. �125�

Combining the first and second corrections, the SILBE
scheme allows one to solve the continuity equation and the
diffusion equation without increasing the computational de-
mand. In particular the distinct species flow velocity can be
redefined during the post processing. Coherently with the
common practice widespread in the lattice Boltzmann frame-
work, this numerical trick allows one to correct the effects of
a systematic error, which is clearly pointed out by the
asymptotic analysis, by designing a properly modified
scheme.

Concerning the second-order expansion coefficient f�d
�2�,

the discrete scheme departs from the results derived for the

continuous model—namely,
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f�d
�2� = ��

�2�sI + f*
e2���

�0�,û�
�1�,û�

�1��

− Â*
†� �f�

�0�

�t̂
+ V̂ · ��̂f�

�1�� −
1

2
V̂ · �̂�V̂ · �̂f�

�0��	 .

�126�

Introducing the previous expansion coefficient in Eq. �118�
yields

�

�t̂
���

�0�û�
�1�� + �̂ · ���

�0�û�1�
� û�1�� + s�/3�̂��

�2�

= 
̂m
I �ĵ�3� − ĵ�

�3�� + 
̂m
I V̂ � k�3� + �̂ · �V̂ � V̂ � �Â*

† +
1

2
I�

�Vˆ · �̂f�
�1� + V̂ � V̂ � �Â*

† + I�
�f�

�0�

�t̂

−
1

2
V̂ � V̂ � �Â*

† +
1

3
I��V̂ · �̂�V̂ · �̂f�

�0���	 . �127�

After some simple algebra, the final expression for the dis-
tinct species momentum equation is recovered:

�

�t̂
���

�0�û�
�1�� + �̂ · ���

�0�û�1�
� û�1�� + s�/3�̂��

�2�

= 
̂m
I �ĵ�3� − ĵ�

�3�� + 
̂m
I V̂ � k�3�

+ �̂ · ��̂md��̂���
�0�û�

�1�t� + �̂���
�0�û�

�1��T�

+ �̂md��̂ · ��
�0�û�

�1��I +
1

6� s�

3
̂m1
II

−
s��2 − s��

3
̂m3
II

+
s��3s� − 1�

9 ��̂2��
�0�I − � s�

9
̂m1
II

+
s�

18��̂�̂��
�0�	 ,

�128�

where �̂md and �̂md are defined as

�̂md =
1

3
̂m1
II

+
1

6
, �129�

�̂md =
2 − s�

3
̂m3
II

−
1

3
̂m1
II

−
2s� − 1

6
. �130�

Concerning the distinct species momentum equation, the dis-
crete formula implies some inconsistent terms which reduce
the accuracy of the scheme up to the first order in space only.
In this case, it is not easy to improve the performances of the
scheme by designing some proper corrections. Fortunately in
many applications first-order accuracy in space for solving
the distinct species momentum is enough, as pointed out dis-
cussing the diffusion phenomenological equation given by
Eq. �5�, and it is coherent with the single-fluid approach
�which completely neglects higher-order effects�.

Moreover, if the relaxation frequencies are properly se-
lected, it is possible to increase the accuracy in solving the

barycentric momentum equation. In particular, if the relax-
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ation frequencies controlling the bulk viscosities are selected
in such a way to satisfy the condition

1


̂m3
II

=
3

2 − s�
��̂m +

1

3
̂m1
II

+
2s� − 1

6 � , �131�

then summing over the species yields

�

�t̂
���0�û�1�� + �̂ · ���0�û�1�

� û�1��

= − �̂p̂�2��̂ · ��̂md��̂���0�û�1�� + �̂���0�û�1��T�

+ �̂md�̂ · ���0�û�1��I , �132�

where p̂�2�=��s���
�2� /3. The condition given by Eq. �131�

was used to simplify some of the additional terms in Eq.
�128� involving the density gradient.

Coming back to the original quantities expressed in physi-
cal units, it is easy to verify that �̃�=��

�0� and ũ�=�u�
*�1�

satisfy the continuity equation and the diffusion equation if
terms O��2� are neglected, while �̃=��0�+�2��2� and
u=�u�1� satisfy the Navier-Stokes system of equations if
terms O��3� are neglected. In other words, the proposed
scheme allows one to compute the mixture quantities with
second-order accuracy by redefining the numerical viscosity,
while introducing a fictitious forcing term and redefining the
species velocity allow one to compute the distinct species
quantities with first-order accuracy.

Some final remarks concerning the SILBE scheme are
reported. The SILBE scheme is essentially a modified im-
plicit formulation of the Euler integration rule. The scheme is
completely local and it is very stable for a wide range of
relaxation frequencies. The nonlinear terms in the equilib-
rium distribution function �according to the proposed semi-
implicit-linearized approach� are computed explicitly. The
asymptotic analysis discussed in this section proves that the
previous approximations simplify the numerical implementa-
tion of the proposed scheme without effecting the desired
accuracy. In order to solve the distinct species quantities with
first-order accuracy in space, an additional forcing term �first
correction� and a proper redefinition of the distinct species
flow velocity �second correction� were considered. On the
other hand, redefining the viscosities is enough for recover-
ing the Navier-Stokes set of equations for the mixture with
second-order accuracy in space, according to the common
practice.

In the next section, some numerical results concerning the
discussed schemes will be reported.

V. NUMERICAL RESULTS FOR SOME TEST CASES

A. Stability analysis by eigenvalue spectra for single-step
integration formulas

First of all, the numerical stability of the single-step inte-
gration formulas for simple diffusion phenomena by means
of von Neumann technique is reported. In the von Neumann
analysis, the solution of the finite difference equation is writ-
ten as the familiar Fourier series and the numerical stability
056705-
is evaluated by the magnitude of eigenvalues of an amplifi-
cation matrix �58�.

Even though this is not the only possible choice, in the
following only the single-step integration formulas will be
considered for the stability analysis, because in this case the
identification of the amplification matrix is immediate.
Moreover, the total pressure gradient acting on the mixture
will be considered small and the external force will be ne-
glected. These hypotheses allow one to consider the barycen-
tric velocity small enough to be negligible, and consequently
the dynamics of the distinct species is decoupled. In this way,
the set of ordinary differential equations governing the phe-

nomenon is given by Eq. �94�, where M̄A depends on the
considered integration formula. Finally, for simplifying the
management of the dimensionless relaxation frequencies,

they were selected in such a way that 
̂�
k =1 for any k�2

concerning the self-collisions and 
̂m
k = 
̂m

I for any k�1 con-
cerning the cross collisions.

In the results of the numerical simulations reported in
Fig. 1, four single-step integration formulas were considered:
forward Euler �FE�, backward Euler �BE�, simplified
backward differentiation formula with third-order accuracy
�SBDF3�, and finally the Runge-Kutta-Gauss formula with
fourth-order accuracy �RKG4�. As far as the stability analy-
sis is concerned, the results obtained for the BE formula
still hold for the SILBE, since the core of both solvers is
the same. In particular the minimum, maximum, and aver-

FIG. 1. Numerical results for the von Neumann stability analy-
sis of single-step integration formulas. The minimum, maximum,
and averaged moduli of the whole set of complex eigenvalues
are reported for some values of the tunable relaxation frequency


̂m
I =�t /�m

I � �0.1,100�. The following numerical schemes were
considered: forward Euler �FE�, backward Euler �BE�, simplified
backward differentiation formula with third-order accuracy
�SBDF3�, and finally the Runge-Kutta-Gauss formula with fourth-
order accuracy �RKG4�.
aged moduli of the whole set of complex eigenvalues are
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reported for some values of the tunable relaxation frequency


̂m
I =�t /�m

I � �0.1,100�.
The FE scheme is the common implementation of the

lattice Boltzmann method. Since the stability range is re-
duced by the relaxation of self-collisions characterized by


̂�
k =1 for k�2, this scheme will diverge for 
̂m

I �1. This is
confirmed by the von Neumann stability analysis, because
the maximum modulus of the complex eigenvalues will be

greater than unit �positive amplification� for 
̂m
I �1 and, once

this threshold is surpassed, it increases linearly with this re-
laxation frequency.

On the other hand, the BE scheme shows a very stable
behavior. For the considered range of the relaxation frequen-
cies, the modulus of all the eigenvalues is always smaller
than unity �negative amplification� and in particular the av-
eraged modulus is located in between the maximum and
minimum values. This is important because it means that the
eigenvalue spectrum is not becoming denser close to the sta-
bility threshold. The same considerations hold for the
SBDF3 scheme.

The RKG4 scheme is stable for the whole considered
range but the eigenvalue spectrum is becoming denser close
to the stability threshold �early instability�. This is consistent
with the general theory of the numerical methods, because
the size of the instability region grows as the order of the
method increases. This indirectly proves that the common
practice, widespread in the lattice Boltzmann community, of
improving the accuracy by redefining the macroscopic trans-
port coefficients does not contract the stability region, unlike
what happens if more accurate schemes are considered.

In the next subsection, the performances of single-step
and multistep methods with regards to the actual consistency
for a simple test case will be compared.

B. Decay of the sine-wave density profile

In this section, the goal is to verify that the actual diffu-
sivity of the numerical schemes reproduces the expected ana-
lytical results.

The transient method �19� is a very popular method for
measuring the effective numerical diffusivity. Since in the
present paper we are generally dealing with particle mass
ratio different from unity—i.e., eA�eB—the equation for the
mass concentration is not as simple as the ideal Fick’s law
should prescribe. In order to avoid of including an additional
term due to pressure diffusion according to Eq. �73�, it is
possible to combine directly Eq. �68� and the continuity
equation—namely,

��̃�

�t
+ � · ��̃�ũ� = D��2�̃�, �133�

which involves the distinct species diffusivity D�. Let us
consider a set of starting density fields for each species
���x ,0� in such a way that ��e��̃��x ,0� is constant. This
implies that the total pressure gradient for the mixture is
zero. In general it is not possible to deduce from the previous
statement that the barycentric velocity will be necessarily

zero, because the local composition of the mixture can effect

056705-
the relationship between the total pressure and the total den-
sity during the approaching to equilibrium. This concept will
be better discussed in Sec. V D. However, let us suppose in
the present case that barycentric velocity is zero—i.e., ũx
=0. In the case D� is a constant, a solution of the Eq. �133�,
describing a decaying sine-wave density profile, is given as

�̃��x,t� = �̃�
0 + ��̃�� − �̃�

0�exp�− k2D�t�sin�kx� , �134�

where �̃�
0 is the averaged density of the � species, �̃�� is the

maximum value of the initial perturbation applied to the den-
sity, and k=2� /L is the wave number of the perturbation.
Since periodic boundary conditions were used, the ratio be-
tween the computational domain length along x axis and the
wavelength was an integer. The numerical diffusivity can be
measured �transient method� by considering the sine-wave
maximum decay—namely,

D�
MT =

1

k2t
ln� �̃a��/�2k�,0� − �̃�

0

�̃���/�2k�,t� − �̃�
0 	 . �135�

Another way for instantaneously measuring the species dif-
fusivity �flux method� is based on the diffusion equation
given by Eq. �68�—namely,

D�
MF = −

�̃��ũ�x − ũx�
��̃�/�x

. �136�

When the numerical implementations due to discrete formu-
las are considered, these two methods could be not equiva-
lent, as can be easily checked by considering, for example,
the BE and FE schemes, which both satisfy Eq. �68� but not
the general diffusion equation �133�. In particular, taking into
account Eq. �114�, the theoretical diffusivity expected by
means of the transient method for the Euler-based methods
could be effected by the first-order error �if any� in the con-
tinuity equation—namely,

D�
TT = D�

TF�1 +
�

2
� , �137�

where D�
TF=e� /
m

I =D� is the theoretical diffusivity expected

by means of the flux method, �=−
̂m
I for FE, �= + 
̂m

I for BE,
and finally �=0 for SILBE �where the redefined velocity
must be considered�.

The numerical results reported in Fig. 2 confirm the ex-
pected theoretical values obtained by means of the
asymptotic analysis. In particular both the BE �limited to


̂m
I �1 by the stability threshold� and FE schemes do not

satisfy the continuity equation because D�
TT�D�

TF=D�: in
particular D�

TT�D�
TF for BE and D�

TTD�
TF for FE. The re-

sults are very good for both SBDF3 and RKG4, which cor-
rectly ensure the continuity equation. The important differ-
ence between the previous two schemes is that the RKG4
scheme is highly nonlocal, because it involves the values of
all the cells for updating each one of them. On the other
hand, the SBDF3 scheme produces essentially the same re-
sults but with a four-cell-wide computational rule, which is
not ideal for parallel computing, but much more local than
the previous one.
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For the decay of the sine-wave density profile, the multi-
step formulas �BDF2 and BDF3� do not seem to have any
practical advantage. The numerical results concerning the
multistep formulas are reported in Fig. 3. The results are as
good as those obtained by the SBDF3 but with an additional
memory demand, required by referring to the numerical so-
lutions at the previous time steps. According to the
asymptotic analysis, the BDF2 scheme is enough for cor-
rectly solving the continuity equation with second-order ac-
curacy. The BDF3 is less robust for large values of the di-
mensionless relaxation frequency �in particular, the measured

diffusivity for 
̂m
I close to 100 tends to be negative�. The fact

that the numerical results diverge from those prescribed by

FIG. 2. Numerical results for the sine wave density decay
�single-step formulas�. The measured diffusivity obtained by means
of the transient method D�

MT given by Eq. �135� and that obtained
by means of the flux method D�

MF given by Eq. �136� are reported
and compared with the corresponding theoretical values �D�

TT and
D�

TF, respectively� given by Eq. �137�. The reported numerical
schemes are the same considered in Fig. 1.

FIG. 3. Numerical results for the sine-wave density decay �mul-
tistep formulas�. The involved parameters are the same considered
in Fig. 2. The following numerical schemes were considered: back-
ward differentiation formula with second-order accuracy �BDF2�
and backward differentiation formula with third-order accuracy

�BDF3�.

056705-
the asymptotic analysis for large values of 
̂m
I is reasonable

because the assumed condition O�
̂m
I �=1 does not hold any

more. Again the stability performances are worst for more
accurate schemes.

Finally the relative absolute error between the theoretical
species diffusivity and the measured value obtained by
means of the transient method �Fig. 4� and the flux method
�Fig. 5� is reported. It is easy to verify that the corrections
introduced for deriving the SILBE scheme are quite effective
in recovering the desired set of macroscopic equations and,
in particular, for solving the continuity equation with second-
order accuracy. Moreover, these corrections do not contract
the stability region of the scheme if compared to the original
BE approach. In particular, the performances of the SILBE

scheme for high values of 
̂m
I are better than those of the

RKG4.
The sine-wave density decay is a very simple test case,

which essentially involves the continuity equation and the
leading terms of the momentum equation only, which are the
linear terms of the Navier-Stokes equations. Some doubts

FIG. 4. Relative absolute error between the measured species
diffusivity obtained by means of the transient method and the the-
oretical values. The following numerical schemes were considered:
backward differentiation formula with second-order accuracy
�BDF2�, the Runge-Kutta-Gauss formula with fourth-order accu-
racy �RKG4�, which produces performances analogous to the BDF3
scheme, and finally the semi-implicit-linearized backward Euler
�SILBE� scheme.

FIG. 5. Relative absolute error between the measured species
diffusivity obtained by means of the flux method and theoretical
values. The reported numerical schemes are the same considered in

Fig. 4.
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still remain concerning the fact that solving explicitly the
nonlinear terms of the equilibrium distribution function
could lead to instability. For this reason, in the next section
the Taylor-Green vortex flow will be discussed.

C. Taylor-Green vortex flow

In order to check the effects due to solving explicitly the
nonlinear terms in the equilibrium distribution function pro-
posed in the framework of the semi-implicit-linearized
schemes, the two-dimensional �2D� Taylor-Green vortex
flow will be discussed as a test case. Let us consider an
ideally decoupled mixture—i.e., a mixture defined in such a
way that the cross collisions are negligible if compared with
the self-collisions. In this case, each species will evolve ac-
cording to an independent dynamics. We can imagine to ini-
tialize each species density in order to reproduce as many
Taylor-Green vortex flows as the number of species. For sim-
plifying the management of the dimensionless relaxation fre-

quencies, they were selected in such a way that 
̂�
k = 
̂�

II for

any k�2 concerning the self-collisions and 
̂m
k =0 for any

k�1 concerning the cross collisions.
In the low-Mach-number limit, the Taylor-Green vortex

flow in two dimensions has the following analytic solutions
to the incompressible Navier-Stokes equation:

ũ�x�x,y,t� = − U0 cos�kx�sin�ky�exp�− 2k2��t� , �138�

ũ�y�x,y,t� = + U0 cos�ky�sin�kx�exp�− 2k2��t� , �139�

p̃��x,y,t� = −
1

4
U0

2�cos�2kx� + cos�2ky��exp�− 4k2��t� + P�0,

�140�

where U0 is the initial velocity amplitude, k=2� /L is the
wave number, and P�0 is an arbitrary constant pressure �in
the following P�0=0 will be assumed�. The �spatially� aver-
aged total kinetic energy is


E�t�� =
2

L2U0
2 � ũ�

2�x,y,t�dxdy , �141�

which should evolve in time as exp�−4k2��t�. This suggests a
practical way to measure the distinct species kinetic
viscosity—namely,

��
M =

1

4k2t
ln� 
E�0��


E�t�� � . �142�

It is easy to verify that the theoretical kinematic viscosity
expected by means of the previous method could be effected
by the second- and third-order errors due to the considered
integration formula—namely,

��
T =

c2

3
�
II�1 +

�

2
� , �143�

where �=−
̂�
II for FE, �= + 
̂�

II for both BE and SILBE
�where the redefined velocity must be considered�, and fi-

nally for �=0 for the BDF3 scheme. Fortunately, according
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to the common practice, it is possible to improve the accu-
racy of the FE, BE, and SILBE schemes by redefining the
actual kinematic viscosity. Unlike the species diffusivity, in
this case redefining the kinematic viscosity is enough be-
cause the discretization error has exactly the same structure
of the physical term we want to simulate.

The SBDF3 scheme, which was so promising according
to the results for the sine wave density decay, completely
fails for the present test case. In principle the SBDF3 scheme
should move some steps towards the physical kinematic
viscosity—namely, ��

T =c2 / �3
�
II�. In fact this scheme is char-

acterized by the required spatial accuracy, even though the
effects due to the errors in the estimation of the time deriva-
tives should be better investigated by means of the
asymptotic analysis. Unfortunately the scheme is not stable
for the present case �this does not contradict the stability
analysis performed previously, because it refers to a different
test�. The velocity field and consequently the total kinetic
energy mimic the analytical solution during the first time
steps, but cumulative errors in the pressure field force the
scheme to diverge. This empirically proves that, generally
speaking, moving along the lattice characteristics is a better
strategy because it is closer to the physical meaning of the
lattice representation.

In order to check the analytical expressions given by Eq.
�143�, in Fig. 6 some numerical results are reported. The
numerical simulations confirm that the FE scheme underes-
timates, the BE-SILBE scheme overestimates, and finally the
BDF2-BDF3 schemes closely reproduce the physical kine-
matic viscosity. Actually the performances of the BDF3
scheme are better than those obtained by means of the BDF2
scheme because the measured viscosity is closer to the physi-
cal one �as it is clear by carefully checking Fig. 6�.

Finally in Fig. 7 some numerical results �the FE scheme is

limited to 
̂�
II�2 by the stability threshold� concerning the

measured kinematic viscosity for some values of the tunable

relaxation frequency 
̂�
II=�t /��

II� �0.1,100� are reported. The
numerical simulations are in good agreement with the pre-

FIG. 6. Total kinetic energy decay in time for the Taylor-Green

vortex flow �
̂�
II=1�. The following numerical schemes were con-

sidered: forward Euler �FE�, backward Euler �BE�, equivalent in
this test case to the SILBE scheme, backward differentiation for-
mula with second-order accuracy �BDF2�, and backward differen-
tiation formula with third-order accuracy �BDF3�.
dictions based on Eq. �143�.
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The previous numerical tests were preliminarily consid-
ered for checking the suggested numerical technique. In the
next section, some additional tests are discussed, because
they are more relevant for mixture modeling. In particular
the case when the molecular weights of the two species of
particles are different and the barycentric velocity becomes
noticeable is analyzed.

D. Binary diffusion

In order to evaluate the advantages of the proposed
model, two sets of computations are carried out. A proper
binary mixture made of water and hydrogen is considered for
dealing with a large particle mass ratio �MH2O/MH2

=9�. In
the first case, the effects due to the barycentric velocity are
neglected and this allows one to recover the results due to the
Fick model in the macroscopic limit. Since this is not accept-
able for this mixture, the dynamics of the barycentric veloc-
ity is taken into account in the second set of computations
and consequently some results, which are consistent with the
Maxwell-Stefan macroscopic model, are reported.

1. Fick macroscopic model

Let us consider hydrogen �A� and water �B� diffusing into
each other at T=1073 K and p̃0=1�105 Pa, as total initial
pressure. Consequently the total initial number density
n0= p̃0 / �RT�=11.21 mol/m3, without distinguishing the na-
ture of the particles.

As previously discussed, it is possible to deal with mo-
lecular weights of the two species, which are different from
each other, by properly tuning the ratio between moving par-
ticles and those at rest—i.e., by means of s�. In this case, we
selected to design the discrete numerical lattice in such a way
so as to match the dynamics of the lighter �faster� particles—
i.e., hydrogen—for which sA=1. Consequently the dynamics

FIG. 7. Numerical results for the kinematic viscosity measured
by means of the Taylor-Green vortex flow for some values of the

tunable relaxation frequency 
̂�
II=�t /��

II� �0.1,100�. The reported
numerical schemes are the same considered in Fig. 6.
of the heavier �slower� particles—i.e., water—must be cor-
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rected and this implies sB=1/9. For this reason, the dimen-
sionless energy for the species A can be expressed in lattice
units as

êA =
eA

c2 =
RT

MAc2 =
1

3
, �144�

which implies c=3658 m/s. The lattice speed is the ratio
between the discretization space step and the time step—
namely, c=�x /�t—and, for this reason, high lattice veloci-
ties force one to reduce the corresponding time step and to
increase the computational time. For this computation, the
space step is �x=0.25 �m and consequently �t=0.068 ns.

The initial density profile for each species is assumed to
have a hyperbolic tangent profile with the form �47�

�̃A�x,t� = �̃A
0�1 + tanh� x − L/2

xt
�� , �145�

�̃B�x,t� = �̃B
0�1 − tanh� x − L/2

xt
�� , �146�

where L is the length of the computational domain and xt
is the thickness of the diffusion profile. For this computation,
L=0.3 mm and xt=�x=0.25 �m �very sharp�. This meas
that the total number of discrete cells considered in these
calculations is L /�x=1200. The maximum densities for both
species are selected in such a way that �̃A

0 /MA= �̃B
0 /MB

= ñ0 /2. In this way, it is easy to verify that ñ�x ,0�= ñA�x ,0�
+ ñB�x ,0�= ñ0= ñ�x , t→��; i.e., the total number of particles
in each section is roughly constant and then consequently the
total pressure is constant as well—i.e., p̃�x ,0�= p̃0= p̃�x , t
→��. The selected numerical vales are �̃A

0 =0.0112 kg/m3

and �̃B
0 =0.1009 kg/m3.

On the other hand, the initial total density profile is

�̃�x,t� = �̃0�1 + � �̃A
0 − �̃B

0

�̃0 + �̃0 �tanh� x − L/2

xt
�� , �147�

which it is clearly not homogeneous in space. Recalling how
the mutual diffusivity coefficient depends on the total den-
sity, namely,

D =
RT�̃


m
I ñMAMB

, �148�

it is possible to update in each cell the relaxation parameter

m

I in such a way to recover the desired mutual diffusivity. At
the considered temperature, the mutual diffusivity for the
hydrogen-water binary mixture is D=4.63 cm2/s �see Eq.
�76�� and this values does not depend on the species concen-
trations. This means that the relaxation parameter 
m

I should
be tuned in each cell for compensating the spatial inhomo-
geneities due to �̃ in order to recover the desired value
for D. Consequently the single-species diffusivity—i.e.,
D�=e� /
m

I —would be no more constant.
However, the final goal of the present calculations is to

validate the model by proving that is allows one to catch
consistently the dynamics of each species according to
its molecular weight. It would be much more preferable to

have fixed values for the single-species diffusivity D�,
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because in this way it would easier to check the solutions
of Eq. �133�. For this reason, the average total density
value—namely, �̃0=0.1121 kg/m3—has been used in the
estimation of the relaxation parameter. This yields


̂m
I =0.3658 and consequently DA=8.334 cm2/s for hydrogen

and DB=0.926 cm2/s	DA.
In this first set of calculations, the barycentric velocity has

been neglected. This must not be considered a direct conse-
quence of the fact that ñ�x ,0�= ñ0= ñ�x , t→��—i.e., of the
fact that the total number density and the total pressure are
roughly constant during the simulation. In fact the average
molecular weight for the mixture, given by Eq. �71�, varies
spatially for compensating the spatial inhomogeneities due to
the total density, as can be clearly proved by recalling that
p=RT��̃ /M�. On the other hand, when steady equilibrium is
approached, the species will have homogeneous concentra-
tions over the computational domain and the mixture mo-
lecular weight would be homogeneous too, because in this
case both the total pressure and the total density would be
constant. This simple analysis proves that the total density
must be characterized by some dynamics for passing from
the initial configuration given by Eq. �147� to the final ho-
mogeneous configuration �̃�x , t→��= �̃0. Finally, recalling
the continuity equation, any time change in the density pro-
file can only be achieved by some mass flux.

Despite the previous considerations, from the computa-
tional point of view it is always possible to neglect the bary-
centric velocity in the single-species dynamics by simply
omitting the last coupling term in Eq. �102�. For this reason,
this kind of simulations can be defined as decoupled. In this
case, the Eq. �133� reduces to

��̃�

�t
= D��2�̃�. �149�

The previous equation states that the equilibration process
for water, with regards to both species density profile and
partial pressure profile, will take a longer time than for hy-
drogen, because DB	DA. In Fig. 8 the species density pro-
files for the considered binary mixtures are reported at sev-
eral times. In order to better clarify the different dynamics of
the two species, the partial pressure profiles are reported in
Fig. 9. It is evident from these pictures that the lighter par-
ticles �hydrogen� are characterized by a faster dynamics if
compared to the heavier ones �water�. This condition must be
satisfied even though in the present calculations the initial
partial pressure gradient for both species was the same—i.e.,
�p̃A�x ,0�=−�p̃B�x ,0�. This is a consequence of considering
DB	DA. In fact, dividing Eq. �149� by the corresponding
molecular weight and multiplying by RT, the equation gov-
erning the dynamics of the partial pressure p̃� is recovered
and it is easy to verify that the different dynamics between
the two species is still preserved.

In the next paragraph, the effects due to the barycentric
velocity will be discussed.

2. Maxwell-Stefan macroscopic model

First of all, we must discuss the order of magnitude of the

corrections due to the barycentric velocity. Recalling that
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ũA− ũ=xB�ũA− ũB� and analogously ũB− ũ=xA�ũB− ũA�, Eq.
�69� yields

ũA − ũB = −
�̃

�̃A�̃B
m
I � p̃A, �150�

ũB − ũA = −
�̃

�̃A�̃B
m
I � p̃B = −

�̃

�̃A�̃B
m
I ��p̃ − �p̃A� ,

�151�

which means that it is possible to be consistent if and only if
O���p̃��	O���p̃A��. In other words, Eq. �69� considers only
the leading term of Eq. �64�, but it is usually enough for most
of the diffusion phenomena. In fact, according to the
asymptotic analysis, the previous condition is satisfied be-

cause O���̂p̂��=�3 and O���̂p̂A��=�1. This means that the to-
tal pressure spatial gradients are smaller than those of the
single species, but this does not imply that their effects are
negligible.

FIG. 8. Decaying density profiles for hydrogen �A on the right�
and water �B on the left� at several times.

FIG. 9. Decaying partial pressure profiles for hydrogen �A on
the right� and water �B on the left� at several times. It is evident
from the picture that the lighter particles �hydrogen� are character-

ized by a faster dynamics, if compared to the heavier ones �water�.
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Let us introduce the effect of the barycentric dynamics
ruled by the mixture viscosity. According to Eq. �79�, the
mixture kinematic viscosity depends on the local concentra-
tions. Unfortunately this implies a varying Schmidt number,
since NSc=� /D. In the following calculations, the kinematic
viscosity corresponding to the equilibrium homogeneous
concentrations is assumed instead, in order to keep constant
the Schmidt number. In particular, the mixture kinematic vis-
cosity is 2.73 cm2/s, which implies 
̂m1

II =2.528 and conse-
quently NSc=0.6.

The numerical results are reported in Fig. 10, and they are
compared with the previous decoupled simulation. Clearly
the barycentric velocity induces a drag effect aimed at speed-
ing up the dynamics of water and to slow down the dynamics
of hydrogen.

This is not the only effect due to the barycentric dynam-
ics. If one looks closer at the density profiles for both spe-
cies, it is possible to find some fast perturbations. An ex-
ample of fast perturbation is reported in Fig. 11 at different
times. The very sharp initial distribution of the total density
given by Eq. �147� produces a perturbation, which effects the
species density profiles as well, since they are now coupled
each other. The perturbation propagates to the left in the flat
water density profile. Actually the peak of this perturbation
tends to become smoother coming along. It is easy to verify
that the speed of these perturbations is c /�3, and so they can
be considered pseudoacoustic waves �actually truly acoustic
waves should be isoentropic instead of isothermal�.

Finally, the effect of mixture kinematic viscosity on these
perturbations is analyzed. The Schmidt number was doubled
by considering a double kinematic viscosity. In particular,
the artificial mixture kinematic viscosity is 5.46 cm2/s,

ˆ II

FIG. 10. Decaying partial pressure profiles for hydrogen �A on
the right� and water �B on the left� at several times. The results
obtained by taking into account the effects due to the barycentric
velocity �Schmidt number NScA

=0.6� are compared with those ob-
tained by neglecting it �decoupled simulation�. Clearly the barycen-
tric velocity induces a drag effect aiming to speed up the dynamics
of water and to slow down the dynamics of hydrogen.
which implies 
m1=0.7745 and consequently NSc=1.2. The
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numerical results are reported in Fig. 12. It is clear that dou-
bling the value of the Schmidt number does not change sig-
nificantly the perturbations. In particular the viscosity does
not change the propagation time of the perturbation �con-
firming that it is an effect related to the pseudoacoustic
damping� but only the overshooting.

In the next section, the main conclusions of this work will
be summarized.

VI. CONCLUSIONS

The main conclusions of this paper are summarized in the
following.

�A� A lattice Boltzmann model for mixture modeling has
been developed by applying the multiple-relaxation-time ap-
proach to the Hamel model, which involves a simple model
equation aiming to simplify the mixture modeling based on
the continuous kinetic theory. The Hamel model allows one
to derive from a general framework different model equa-
tions independently proposed, like �i� the Gross- Krook
model �35�, based on the linear relaxation of the actual dis-
tribution function to the equilibrium distribution function
centered on the barycentric velocity, and �ii� and the Sirovich
model �36�, based on an additional forcing term proportional
the diffusion velocity for modeling the coupling among the
species due to cross collisions.

FIG. 11. Details concerning the decaying density profile of wa-
ter at several times. The barycentric velocity is characterized by
pseudoacoustic waves �actually truly acoustic waves should be
isoentropic instead of isothermal�, which effect the species density
profiles as well.

FIG. 12. Dependence of the perturbations in the water density
profile induced by the pseudoacoustic waves on the Schmidt num-
ber �NSc=� /D�. It is clear that doubling the value of the Schmidt

number does not change significantly the perturbations.
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By imposing that �a� the pressure must be Galilean invari-
ant and that �b� summing the nonlinear inertial tensor for
each species must produce the same term for the mixture, the
MRT lattice-Boltzmann Hamel model reduces to the gener-
alized MRT lattice-Boltzmann Gross-Krook model, involv-
ing the local Maxwellian centered on the barycentric velocity
only. However, the macroscopic transport coefficients—i.e.,
the species diffusivity, the mixture kinematic viscosity, and
the mixture bulk viscosity—can still be independently tuned.

�B� Reducing the number of moving particles over the
total—i.e., tuning s��1—is possible to effectively deal with
mass particle ratios far from unity. In this way, the effects
due to pressure-driven diffusion can be easily analyzed on
the same computational lattice without any demanding inter-
polation. It is worth the effort to mention that this general-
ized equilibrium distribution function is consistent with the
stability notion for lattice Boltzmann schemes recently sug-
gested �60�.

�C� Usually in the literature the concept of semi-implicit
formulation is used for indicating lattice Boltzmann schemes
which solve implicitly the collisional operator and explicitly
the advection operator. This forces one to solve a �small�
system of nonlinear equations for each computational cell
during each time step. By means of the asymptotic analysis,
it has been proved that it is possible to solve explicitly the
nonlinear terms of the collisional operator without losing the
wider stability typical of the implicit schemes. In this way,
the calculations are drastically reduced and the operative ma-
trices can be computed once for all, independently of the
particular cell, at the beginning of the calculation.

�D� The elementary schemes based on the semi-implicit-
linearized approach are not ideal for parallel computing be-
cause they involve more than one up-wind cell �or the full
distribution function of the up-wind cell�. For this reason, a
modified backward Euler scheme, called the SILBE scheme,
has been proposed. The key numerical tricks underlying the
proposed scheme are �i� in order to solve the distinct species
quantities with first-order accuracy in space, an additional
forcing term �first correction� and a proper redefinition of the
distinct species flow velocity �second correction� were con-
sidered; �ii� in order to solve the Navier-Stokes system of
equations for the mixture with second-order accuracy in
space, the viscosities were redefined, according to the com-
mon practice �simply taking into account a different sign for
the discrete error due to the backward Euler formulation�.
�5� Y. H. Qian, D. D’Humieres, and P. Lallemand, Europhys. Lett.
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�E� For the considered application, the asymptotic analy-
sis, recently suggested as an effective tool for analyzing the
macroscopic equations corresponding to LB schemes, offers
the possibility to easily deal with leading terms in the distri-
bution functions, which are no longer Maxwellian. This rep-
resents a remarkable advantage in comparison with the clas-
sical Chapman-Enskog technique. On the other hand, these
two techniques cannot be considered completely equivalent.
The asymptotic analysis is based on a regular expansion of
the distribution function which is suitable for the low Mach
number limit—i.e., when the diffusive scaling applies �be-
cause diffusion prevails on advection�. On the other hand,
the Chapman-Enskog expansion is based on a multiscale ex-
pansion of the distribution function, which is suitable for
describing phenomena with both advection �on the fast scale�
and diffusion �on the slow scale�. However, since the success
of a multiscale expansion in correctly separating the scales is
based on heuristic assumptions, it is better, whenever pos-
sible, to use a more rigorous regular expansion. For this rea-
son, the reported results should be applied when the low-
Mach-number assumption is acceptable.

�F� The numerical simulations confirm that the proposed
model allows one to recover in the macroscopic limit both
the Fick model �when the barycentric dynamics is neglected�
and the Maxwell-Stefan model �when the barycentric dy-
namics is considered�. The proposed model is perfectly suit-
able as far as the total density is smoothly varying in the
computational domain �this is another way to require a low-
Mach-number limit�. If step-varying total density profiles are
considered, some pseudoacoustic waves can emerge in the
numerical results. Unfortunately, in this case, the numerical
results cannot be considered reliable, because the diffusive
scaling does not apply anymore and the intrinsic limits of the
athermal lattice models appear �impossibility to recover
isoentropic transformations�.
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